Population profiles of industrialized countries show dramatic increases in cardiovascular disease with age, but the molecular and genetic basis of disease progression has been difficult to study because of the lack of suitable model systems. Our studies of Drosophila show a markedly elevated incidence of cardiac dysfunction and arrhythmias in aging fruit fly hearts and a concomitant decrease in the expression of the Drosophila homolog of human KCNQ1-encoded K ؉ channel ␣ subunits. In humans, this channel is involved in myocardial repolarization, and alterations in the function of this channel are associated with an increased risk for Torsades des Pointes arrhythmias and sudden death. Hearts from young KCNQ1 mutant fruit flies exhibit prolonged contractions and fibrillations reminiscent of Torsades des Pointes arrhythmias, and they exhibit severely increased susceptibility to pacing-induced cardiac dysfunction at young ages, characteristics that are observed only at advanced ages in WT flies. The fibrillations observed in mutant flies correlate with delayed relaxation of the myocardium, as revealed by increases in the duration of phasic contractions, extracellular field potentials, and in the baseline diastolic tension. These results suggest that K ؉ currents, mediated by a KCNQ channel, contribute to the repolarization reserve of fly hearts, ensuring normal excitation-contraction coupling and rhythmical contraction. That arrhythmias in both WT and KCNQ1 mutants become worse as flies age suggests that additional factors are also involved.cardiac dysfunction ͉ fibrillation ͉ heart ͉ long-QT syndrome ͉ longevity
AimsThe level of inhibition of the human Ether-à-go-go-related gene (hERG) channel is one of the earliest preclinical markers used to predict the risk of a compound causing Torsade-de-Pointes (TdP) arrhythmias. While avoiding the use of drugs with maximum therapeutic concentrations within 30-fold of their hERG inhibitory concentration 50% (IC50) values has been suggested, there are drugs that are exceptions to this rule: hERG inhibitors that do not cause TdP, and drugs that can cause TdP but are not strong hERG inhibitors. In this study, we investigate whether a simulated evaluation of multi-channel effects could be used to improve this early prediction of TdP risk.Methods and resultsWe collected multiple ion channel data (hERG, Na, l-type Ca) on 31 drugs associated with varied risks of TdP. To integrate the information on multi-channel block, we have performed simulations with a variety of mathematical models of cardiac cells (for rabbit, dog, and human ventricular myocyte models). Drug action is modelled using IC50 values, and therapeutic drug concentrations to calculate the proportion of blocked channels and the channel conductances are modified accordingly. Various pacing protocols are simulated, and classification analysis is performed to evaluate the predictive power of the models for TdP risk. We find that simulation of action potential duration prolongation, at therapeutic concentrations, provides improved prediction of the TdP risk associated with a compound, above that provided by existing markers.ConclusionThe suggested calculations improve the reliability of early cardiac safety assessments, beyond those based solely on a hERG block effect.
The genetic basis of heart development is remarkably conserved from Drosophila to mammals, and insights from flies have greatly informed our understanding of vertebrate heart development. Recent evidence suggests that many aspects of heart function are also conserved and the genes involved in heart development also play roles in adult heart function. We have developed a Drosophila heart preparation and movement analysis algorithm that allows quantification of functional parameters. Our methodology combines high-speed optical recording of beating hearts with a robust, semi-automated analysis to accurately detect and quantify, on a beat-to-beat basis, not only heart rate but also diastolic and systolic intervals, systolic and diastolic diameters, percent fractional shortening, contraction wave velocity, and cardiac arrhythmicity. Here, we present a detailed analysis of hearts from adult Drosophila, 2–3-day-old zebrafish larva, and 8-day-old mouse embryos, indicating that our methodology is potentially applicable to an array of biological models. We detect progressive age-related changes in fly hearts as well as subtle but distinct cardiac deficits in Tbx5 heterozygote mutant zebrafish. Our methodology for quantifying cardiac function in these genetically tractable model systems should provide valuable insights into the genetics of heart function.
In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.