We present a method to robustly discriminate clustered from randomly distributed molecules detected with techniques based on single-molecule localization microscopy, such as PALM and STORM. The approach is based on deliberate variation of labeling density, such as titration of fluorescent antibody, combined with quantitative cluster analysis, and it thereby circumvents the problem of cluster artifacts generated by overcounting of blinking fluorophores. The method was used to analyze nanocluster formation in resting and activated immune cells.
The organization of proteins and lipids in the plasma membrane has been subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here, we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase, nor result in any enrichment of nanoscopic ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.
An existing micro-x-ray fluorescence (micro-XRF) spectrometer designed for light element analysis (6 ≤ Z ≤ 14) has been extended to confocal geometry: a second polycapillary x-ray optic has been introduced in front of the energy dispersive x-ray detector. New piezo positioners for optimum alignment of both optics have been installed inside the vacuum chamber. The spectrometer offers now the possibility of true 3D elemental analysis in the micrometer regime. Depth resolution varies between 100 μm at 1 keV fluorescence energy (Na-Kα) and 30 μm for 17.5 keV (Mo). To further extend analytical capabilities a second x-ray tube with a Rh anode has been acquired to supplement to existing Mo anode tube. Lower limits of detection have been determined to be in the ppm region for confocal geometry. The spectrometer has been characterized and tested using different samples. Furthermore, results have been compared with SR micro-XRF to show the capabilities and limitations of this spectrometer.
Transmembrane proteins are synthesized and folded in the endoplasmic reticulum (ER), an interconnected network of flattened sacs or tubes. Up to now, this organelle has eluded a detailed analysis of the dynamics of its constituents, mainly due to the complex three-dimensional morphology within the cellular cytosol, which precluded high-resolution, single-molecule microscopy approaches. Recent evidences, however, pointed out that there are multiple interaction sites between ER and the plasma membrane, rendering total internal reflection microscopy of plasma membrane proximal ER regions feasible. Here we used single-molecule fluorescence microscopy to study the diffusion of the human serotonin transporter at the ER and the plasma membrane. We exploited the single-molecule trajectories to map out the structure of the ER close to the plasma membrane at subdiffractive resolution. Furthermore, our study provides a comparative picture of the diffusional behavior in both environments. Under unperturbed conditions, the majority of proteins showed similar mobility in the two compartments; at the ER, however, we found an additional 15% fraction of molecules moving with 25-fold faster mobility. Upon degradation of the actin skeleton, the diffusional behavior in the plasma membrane was strongly influenced, whereas it remained unchanged in the ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.