Lithium−sulfur (Li/S) technology holds great promise for efficient, safe, and economic next-generation batteries. However, commercialization is limited by some issues, which are related to the fast degradation of Li/S cells and poor rate capability. Existing strategies addressing these issues are often unsuitable for commercialization because of their complexity and lack of scalability. This Letter presents a simple, cheap, and scalable synthesis of a sulfur-based cathode material from commercially available poly(methyl methacrylate)/poly-(acrylonitrile) (PMMA/PAN) fibers. Thermal conversion of PMMA/PAN fibers with elemental sulfur yields sulfurized poly(acrylonitrile) (SPAN) with up to 46 wt % covalently bound sulfur. The fibrous morphology with cylindrical macropores helps to form electronic conduction networks in the cathode and provides directed diffusion pathways for ions. Consequently, these Li/SPAN cells show low internal resistances, high initial capacities up to 1672 mAh•g −1 sulfur , high rate capabilities up to 8C, and excellent cycle stabilities over 1200 cycles. In addition, structure and postmortem analysis allow the correlation of electrochemical performance with SPAN's chemical structure.
Solvent-induced phase separation (SIPS) and thermally-induced phase separation (TIPS) derived poly(acrylonitrile) (PAN) based monoliths with different morphology and specific surface area were prepared and thermally converted into monolithic sulfur-poly(acrylonitrile) (SPAN) materials for use as active cathode materials in lithium-sulfur batteries. During thermal processing, the macroscopic monolithic structure fully prevailed while significant changes in porosity were observed. Both the monomer content in the precursor PAN-based monoliths and the tortuosity of the final monolithic SPAN materials correlate with the electrochemical performance of the SPAN-based cathodes. Overall, percolation issues predominate. In percolating SPAN-based cathode materials, the specific capacity of the SPAN-based cells increases with decreasing tortuosity. All monolithic SPAN materials provided highly reversible and cycle stable cathodes reaching reversible discharge capacities up to 1330 mA h g sulfur À1 @ 0.25C, 900 mA h g sulfur À1 @ 2C and 420 mA h g sulfur À1 @ 8C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.