Purpose of the article: The ability of the company to predict customer churn and retain customers is considered to be worthy competitive advantage since it improves cost allocation in customer retention programs, retaining future revenue and profits. In addition, it has several positive indirect impacts such as increasing customer's loyalty. Therefore, the focus of the article is on building highly reliable and robust classification model, which deals with such a task. Methodology/methods: The analysis is carried out on labelled ecommerce retail dataset describing 10 000 most valuable customers with the highest CLV (Customer Lifetime Value). To obtain the best performing ANN (Artificial Neural Network) classification model, proposed hyperparameter search space is explored with genetic algorithm to find suitable parameter settings. ANN classification performance is measured with regard to prediction ability, which is understood as point estimate of AUC (Area Under Curve) mean on 4fold cross-validation set. Explored part of hyperparameter search space is analyzed with conditional inference tree structure addressing underlying fundamental context of given optimization which results in identification of critical factors leading to well performing ANN classification model. Scientific aim: To present and execute experimental design for performance evaluation and hyperparameter optimization of classification models, which are used for customer churn prediction. Findings: It is concluded and statistically proven that in experimental context described, regularization parameter as well as training function have significant influence on classifiers AUC performance contrasting other properties of ANN. More specifically, well performing ANN classification models have regularization parameter set to 0, adaptation function set to trainlm or trainscg and more than 100 training epochs. Global optimum is identified for solution with regularization parameter set to 0, trainlm adaptation function, 350 training epochs and 7-4-2 architecture. Conclusions: Results imply that placing hyperparameter optimization to ANN classification model leads to improved customer churn prediction ability. The article describes design and execution of machine learning pipeline, hyperparameter optimization and original meta-analysis of the results with conditional inference tree structure, which are considered beneficial for further research.
Achieving sustainability is a major challenge faced by many societies. The increasing moral consciousness of stakeholders has put pressure on companies, forcing these companies to include long-term policies that reflect the regionally specific needs of stakeholders. Using a structural topic model, this study identified differences between developing and developed countries with respect to sustainability disclosures. Data were obtained from 2100 sustainability reports published in the United Nations Global Compact database for the year 2020. In global terms, these sustainability reports addressed three main topics: 1) human rights, 2) diversity, equity, and inclusion, and 3) sustainable production. Moreover, the sustainability reports from developing and developed countries incorporated different communication strategies. Based on the prevalence (rate of occurrence) of content, sustainability reports from developed countries predominantly communicated issues related to “sustainable production” and “supply chain emissions”, whereas sustainability reports from developing countries more frequently communicated issues related to “education” and “human rights".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.