17beta-Estradiol (E2), the most potent female sex hormone, stimulates the growth of mammary tumors and endometriosis via activation of the estrogen receptor alpha (ERalpha). 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which is responsible for the catalytic reduction of the weakly active estrogen estrone (E1) into E2, is therefore discussed as a novel drug target. Recently, we have discovered a 2,5-bis(hydroxyphenyl) oxazole to be a potent inhibitor of 17beta-HSD1. In this paper, further structural optimizations were performed: 39 bis(hydroxyphenyl) azoles, thiophenes, benzenes, and aza-benzenes were synthesized and their biological properties were evaluated. The most promising compounds of this study show enhanced IC 50 values in the low nanomolar range, a high selectivity toward 17beta-HSD2, a low binding affinity to ERalpha, a good metabolic stability in rat liver microsomes, and a reasonable pharmacokinetic profile after peroral application. Calculation of the molecular electrostatic potentials revealed a correlation between 17beta-HSD1 inhibition and the electron density distribution.
Human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyzes the reduction of the weak estrogen estrone (E1) to the highly potent estradiol (E2). This reaction takes place in the target cell where the estrogenic effect is exerted via the estrogen receptor (ER). Estrogens, especially E2, are known to stimulate the proliferation of hormone-dependent diseases. 17beta-HSD1 is overexpressed in many breast tumors. Thus, it is an attractive target for the treatment of these diseases. Ligand- and structure-based drug design led to the discovery of novel, selective, and potent inhibitors of 17beta-HSD1. Phenyl-substituted bicyclic moieties were synthesized as mimics of the steroidal substrate. Computational methods were used to obtain insight into their interactions with the protein. Compound 5 turned out to be a highly potent inhibitor of 17beta-HSD1 showing good selectivity (17beta-HSD2, ERalpha and beta), medium cell permeation, reasonable metabolic stability (rat hepatic microsomes), and little inhibition of hepatic CYP enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.