The VfLb29 leghemoglobin gene promoter was polymerase chain reaction-amplified from a Vicia faba genomic library and was fused to the gusAint coding region. Expression of the chimeric gene was analyzed in transgenic hairy roots of the legumes V. faba, V. hirsuta, and Medicago truncatula as well as in transgenic Nicotiana tabacum plants. The VfLb29 promoter was found to be specifically active not only in the infected cells of the nitrogen-fixing zone of root nodules but also in arbuscule-containing cells of transgenic V. faba and M. truncatula roots colonized by the endomycorrhizal fungus Glomus intraradices. In addition to these two legumes, specific expression in arbuscule-containing cells was also observed in the nonlegume N. tabacum. All studies were done in comparison to the V. faba leghemoglobin gene promoter VfLb3 that as VfLb29 was expressed in the infected cells of root nodules but showed no activity in endomycorrhiza. An activation of the VfLb29 promoter due to hypoxia in metabolically active tissues was excluded. The conserved activation in arbuscule-containing cells of legumes and the nonlegume N. tabacum suggests a conserved trigger for this promoter in legume and nonlegume endomycorrhiza symbioses.
To investigate similarities between symbiotic interactions of broad bean (Vicia faba) with rhizobia and mycorrhizal fungi, plant gene expression induced by both microsymbionts was compared. We demonstrated the exclusive expression of 19 broad bean genes, including VfENOD2, VfENOD5, VfENOD12 and three different leghemoglobin genes, in root nodules. In contrast, the leghemoglobin gene VfLb29 was found to be induced not only in root nodules, but also in broad bean roots colonized by the mycorrhizal fungus Glomus fasciculatum. In uninfected roots, none of the 20 nodulin transcripts investigated was detectable. VfLb29 has an unusually low sequence homology with all other broad bean leghemoglobins as well as with leghemoglobins from other legumes. It can be regarded as a novel kind of leghemoglobin gene not described until now and the induction of which is common to symbiotic interactions of broad bean with both Rhizobium and a mycorrhizal fungus.
Full-length transcript sequences were isolated from broad bean root nodules, which encode a novel nodulin designated VfENOD18. The corresponding transcripts were detected in early and in late stages of nodule development and were localized exclusively in the nitrogen-fixing zone III. The VfENOD18 sequence is not only homologous to a number of ESTs from various mono- and dicotyledonous plants, but also to the ATP-binding protein MJ0577 from Methanococcus jannaschii and to a range of bacterial proteins that belong to the MJ0577 superfamily. Hence, VfENOD18 is a member of a ubiquitous family of plant proteins that might function as ATP-binding proteins or ATPases. On the genomic level, VfENOD18 genes can be divided into two groups on the basis of differences in their 5' UTRs. One group lacks the 5' UTR region including the ATG initiation codon, whereas the second group contained the complete 5' UTR region. Further upstream of this VfENOD18 gene, a retrotransposon sequence was identified. The -14/-964 VfENOD18 promoter fragment was devoid of complete organ-specific elements known from other nodulin gene promoters. Nevertheless, this region was able to mediate full promoter activity in the central region of transgenic Vicia hirsuta root nodules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.