Glycosylated forms of phosphatidylinositol, which have only recently been described in eukaryotic organisms, are now known to play important roles in biological membrane function. These molecules can serve as the sole means by which particular cell-surface proteins are anchored to the membrane. Lipids with similar structures may also be involved in signal transduction mechanisms for the hormone insulin. The utilization of this novel class of lipid molecules for these two distinct functions suggests new mechanisms for the regulation of proteins in biological membranes.
We directly manipulated the levels of PtdIns, PtdInsP and PtdInsP2 in digitonin-treated adrenal chromaffin cells with a bacterial phospholipase C (PLC) from Bacillus thuringiensis and by removal of ATP. The PtdIns-PLC acted intracellularly to cause a large decrease in [3H]inositol- or [32P]phosphate-labelled PtdIns, but did not directly hydrolyse PtdInsP or PtdInsP2. [3H]PtdInsP and [3H]PtdInsP2 levels declined markedly, probably because of the action of phosphatases in the absence of synthesis. Removal of ATP also caused marked decreases in [3H]PtdInsP and [3H]PtdInsP2. The decrease in polyphosphoinositide levels by PtdIns-PLC treatment or ATP removal was reflected by the inhibition of the production of inositol phosphates upon subsequent activation of the endogenous PLC by Ca2(+)-dependent catecholamine secretion from permeabilized cells was strongly inhibited by PtdIns-PLC treatment and by ATP removal. Ca2(+)-dependent secretion was similarly correlated with the sum of PtdInsP and PtdInsP2 when the level of these lipids was changed by either manipulation. PtdIns-PLC inhibited only the ATP-dependent component of secretion and did not affect ATP-dependent secretion. Both PtdIns-PLC and ATP removal inhibited the late slow phase of secretion, but had little effect on the initial rapid phase. Although we found a tight correlation between polyphosphoinositide levels and secretion, endogenous phospholipase C activity (stimulated by Ca2+, guanine nucleotides and related agents) was not correlated with secretion. Additional experiments indicated that neither the products of the PtdIns-PLC reaction (diacylglycerol and InsP1) nor the inability to generate products by subsequent activation of the endogenous PLC is likely to account for the inhibition of secretion. Incubation of permeabilized cells with neomycin in the absence of ATP maintained the level of polyphosphoinositides and more than doubled subsequent Ca2(+)-dependent secretion. The data suggest that: (1) Ca2(+)-dependent secretion has a requirement for the presence of inositol phospholipids; (2) the enhancement of secretion by ATP results in part from increased polyphosphoinositide levels; and (3) the role for inositol phospholipids in secretion revealed in these experiments is independent of their being substrates for the generation of diacylglycerol and InsP3.
Glycoproteins exposed on cell surfaces are commonly anchored in the membrane via hydrophobic peptide domains which penetrate the lipid bilayer. However, it has recently been appreciated that there are exceptions to this generalization and certain cell-surface proteins appear to be anchored via a specific association with phosphatidylinositol. Thy-1 glycoprotein may also be attached to cell membranes by a non-protein hydrophobic domain located at the C-terminus and although the chemical nature of this moiety has not been determined, it was postulated that it might be a lipid. On the other hand, amino-acid sequences predicted from nucleotide sequence analyses suggest that a C-terminal hydrophobic peptide segment not found in the purified, detergent-solubilized Thy-1 glycoprotein may be responsible for attachment. We report here that a highly purified phospholipase C specific for phosphatidylinositol selectively released Thy-1 from viable normal or malignant T lymphocytes. This result supports the proposed lipid nature of the Thy-1 anchoring domain and further suggests that this lipid is, or is closely related to, phosphatidylinositol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.