The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The STE-QUEST satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the Universality of Free Fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose-Einstein condensates of 85 Rb and 87 Rb. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the Eötvös parameter of at least 2 · 10 −15 . In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources.
Moreover, the meaning of the following statement in the introduction was not very clear and led to unfortunate interpretation of the performance of the redshift test.
Atom interferometers have a multitude of proposed applications in space
including precise measurements of the Earth's gravitational field, in
navigation & ranging, and in fundamental physics such as tests of the weak
equivalence principle (WEP) and gravitational wave detection. While atom
interferometers are realized routinely in ground-based laboratories, current
efforts aim at the development of a space compatible design optimized with
respect to dimensions, weight, power consumption, mechanical robustness and
radiation hardness. In this paper, we present a design of a high-sensitivity
differential dual species $^{85}$Rb/$^{87}$Rb atom interferometer for space,
including physics package, laser system, electronics and software. The physics
package comprises the atom source consisting of dispensers and a 2D
magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap
based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein
condensate (BEC) creation and interferometry, the detection unit, the vacuum
system for $10^{-11}$ mbar ultra-high vacuum generation, and the
high-suppression factor magnetic shielding as well as the thermal control
system. The laser system is based on a hybrid approach using fiber-based
telecom components and high-power laser diode technology and includes all laser
sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and
switching of the laser beams is carried out on an optical bench using Zerodur
bonding technology. The instrument consists of 9 units with an overall mass of
221 kg, an average power consumption of 608 W (819 W peak), and a volume of 470
liters which would well fit on a satellite to be launched with a Soyuz rocket,
as system studies have shown.Comment: 30 pages, 23 figures, accepted for publication in Experimental
Astronom
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.