We report a computer vision strategy for the extraction and colorimetric analysis of catalyst degradation and product formation kinetics from video footage. The degradation of palladium(II) pre-catalyst systems to form ‘Pd black’ is investigated as a widely relevant case study for catalysis and materials chemistries. Beyond the study of catalysts in isolation, investigation of Pd-catalyzed Miyaura borylation reactions revealed informative correlations between colour parameters (most notably ΔE, a colour-agnostic measure of contrast change) and the concentration of product measured by off-line analysis (NMR and LC-MS). The breakdown of such correlations helped inform conditions under which reaction vessels were compromised by air ingress. These findings present opportunities to expand the toolbox of non-invasive analytical techniques, operationally cheaper and simpler to implement than common spectroscopic methods. The approach introduces the capability of analyzing the macroscopic ‘bulk’ for the study of reaction kinetics in complex mixtures, in complement to the more common study of microscopic and molecular specifics.
Non-contact computer vision complements traditional offline sampling methods for catalytic reaction monitoring.
Materialized views can bring important performance benefits when querying XML documents. In the presence of XML document changes, materialized views need to be updated to faithfully reflect the changed document. In this work, we present an algebraic approach for propagating source updates to XML materialized views expressed in a powerful XML tree pattern formalism. Our approach differs from the state of the art in the area in two important ways. First, it relies on set-oriented, algebraic operations, to be contrasted with node-based previous approaches. Second, it exploits state-ofthe-art features of XML stores and XML query evaluation engines, notably XML structural identifiers and associated structural join algorithms. We present algorithms for determining how updates should be propagated to views, and highlight the benefits of our approach over existing algorithms through a series of experiments.
Graph composition has applications in a variety of practical applications. In drug development, for instance, in order to understand possible drug interactions, one has to merge known networks and examine topological variants arising from such composition. Similarly, the design of sensor nets may use existing network infrastructures, and the superpositon of one network on another can help with network design and optimisation. The problem of network composition has not received much attention in algorithm and database research. Here, we work with biological networks encoded in Systems Biology Markup Language (SBML), based on XML syntax. We focus on XML merging and examine the algorithmic and performance challenges we encountered in our work and the possible solutions to the graph merge problem. We show that our XML graph merge solution performs well in practice and improves on the existing toolsets. This leads us into future work directions and the plan of research which will aim to implement graph merging primitives in a database engine.
Materialized views can bring important performance benefits when querying XML documents. In the presence of XML document changes, materialized views need to be updated to faithfully reflect the changed document. In this work, we present an algebraic approach for propagating source updates to XML materialized views expressed in a powerful XML tree pattern formalism. Our approach differs from the state of the art in the area in two important ways. First, it relies on set-oriented, algebraic operations, to be contrasted with node-based previous approaches. Second, it exploits state-ofthe-art features of XML stores and XML query evaluation engines, notably XML structural identifiers and associated structural join algorithms. We present algorithms for determining how updates should be propagated to views, and highlight the benefits of our approach over existing algorithms through a series of experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.