Integrin-based mechanotransduction involves a complex focal adhesion (FA)-associated machinery that is able to detect and respond to forces exerted either through components of the extracellular matrix or the intracellular contractile actomyosin network. Here, we show a hitherto unrecognized regulatory role of vimentin intermediate filaments (IFs) in this process. By studying fibroblasts in which vimentin IFs were decoupled from FAs, either because of vimentin deficiency (V0) or loss of vimentin network anchorage due to deficiency in the cytolinker protein plectin (P0), we demonstrate attenuated activation of the major mechanosensor molecule FAK and its downstream targets Src, ERK1/2, and p38, as well as an up-regulation of the compensatory feedback loop acting on RhoA and myosin light chain. In line with these findings, we show strongly reduced FA turnover rates in P0 fibroblasts combined with impaired directional migration, formation of protrusions, and up-regulation of "stretched" high-affinity integrin complexes. By exploiting tension-independent conditions, we were able to mechanistically link these defects to diminished cytoskeletal tension in both P0 and V0 cells. Our data provide important new insights into molecular mechanisms underlying cytoskeleton-regulated mechanosensing, a feature that is fundamental for controlled cell movement and tumor progression.
Plectin is a major intermediate filament (IF)–based cytolinker protein that stabilizes cells and tissues mechanically, regulates actin filament dynamics, and serves as a scaffolding platform for signaling molecules. In this study, we show that plectin deficiency is a cause of aberrant keratin cytoskeleton organization caused by a lack of orthogonal IF cross-linking. Keratin networks in plectin-deficient cells were more susceptible to osmotic shock–induced retraction from peripheral areas, and their okadaic acid–induced disruption (paralleled by stress-activated MAP kinase p38 activation) proceeded faster. Basal activities of the MAP kinase Erk1/2 and of the membrane-associated upstream protein kinases c-Src and PKCδ were significantly elevated, and increased migration rates, as assessed by in vitro wound-closure assays and time-lapse microscopy, were observed. Forced expression of RACK1, which is the plectin-binding receptor protein for activated PKCδ, in wild-type keratinocytes elevated their migration potential close to that of plectin-null cells. These data establish a link between cytolinker-controlled cytoarchitecture/scaffolding functions of keratin IFs and specific MAP kinase cascades mediating distinct cellular responses.
Mature focal adhesions and fibrillar adhesions act as anchorage sites for vimentin filaments, with plectin isoform 1f being the crucial linker protein. Plectin serves as a nucleation and assembly center for the de novo formation of vimentin networks. Anchored vimentin creates a resilient cage-like core structure that affects cell shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.