Persistent congestions which are varying in strength and duration in the dense traffic networks are the most prominent obstacle towards sustainable mobility. Those types of congestions cannot be adequately resolved by the traditional Adaptive Traffic Signal Control (ATSC). The introduction of Reinforcement Learning (RL) in ATSC as tackled those types of congestions by using on-line learning, which is based on the trial and error approach. Furthermore, RL is prone to the dimensionality curse related to the state–action space size based on which a non-linear quality function is derived. The Deep Reinforcement Learning (DRL) framework uses Deep Neural Networks (DNN) to digest raw traffic data to approximate the quality function of RL. This paper provides a comprehensive analysis of the most recent DRL approaches used for the ATSC algorithm design. Special emphasis is set to overview of the traffic state representation and multi-agent DRL frameworks applied for the large traffic networks. Best practices are provided for choosing the adequate DRL model, hyper-parameters tuning, and model architecture design. Finally, this paper provides a discussion about the importance of the open traffic data concept for the extensive application of DRL in the real world ATSC.
Variable Speed Limit (VSL) control systems are widely studied as solutions for improving safety and throughput on urban motorways. Machine learning techniques, specifically Reinforcement Learning (RL) methods, are a promising alternative for setting up VSL since they can learn and react to different traffic situations without knowing the explicit model of the motorway dynamics. However, the efficiency of combined RL-VSL is highly related to the class of the used RL algorithm, and description of the managed motorway section in which the RL-VSL agent sets the appropriate speed limits. Currently, there is no existing overview of RL algorithm applications in the domain of VSL. Therefore, a comprehensive survey on the state of the art of RL-VSL is presented. Best practices are summarized, and new viewpoints and future research directions, including an overview of current open research questions are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.