Typical laboratory optical systems use commercially off-the-shelf components in which emphasis is oriented toward ease of assembly and a wide range of adjustability. However, these mounts often require individual alignments that, when each degree of adjustability is cumulated in a complex optical system, can be inefficient and time consuming. Furthermore, most of these optomechanical mounts lack the mechanical robustness required to maintain operational performances out of the laboratory environment. An optomechanical assembly method based on passively aligning design features is proposed to simplify breadboard level optical systems, to improve alignment accuracy and maintaining operational pointing stability. Given the recent improvements in lens passive centering techniques, it seemed worth exploring methods to reduce alignment time and improve the mechanical robustness of laboratory setups. Recent studies show that a typical optical lens centering of <1 arc min with respect to its mount can be achieved using patented auto centering and edge contact mounting technologies. To achieve similar position accuracy between multiple lenses on a portable breadboard, lens mounts should be designed and built with proper reference surfaces and a system should easily reference one mount with respect to the other. The use of reference spheres and dedicated optomechanical mounts is employed to leverage the standard threaded holes of laboratory breadboards and achieve precise lens mount positioning. A series of optomechanical mounts incorporating these techniques are therefore tested. Position accuracy and repeatability are measured mechanically with a coordinate measuring machine and optically with the active monitoring of a laser beam centroid position. Measured position accuracy at the optomechanical mount level is <50 μm with a repeatability of less than 5 μm per interface. The optomechanical mounts robustness is tested within typical storage temperature range of −46°C to 63°C and at vibrations levels exceeding typical shipping conditions. Measured optical pointing stability of a simple optical system after environmental testing was found to be under 25 μm. This method should be a promising solution to bridge the design technological gap between the early prototyping and the production phases. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.