Optical trapping and manipulation of neutral particles has led to a variety of experiments from stretching DNA-molecules to trapping and cooling of neutral atoms. An exciting recent outgrowth of the technique is an experimental implementation of atom Bose-Einstein condensation. In this paper, we propose and demonstrate laser induced trapping for a new system-a gas of excitons in quantum well structures. We report on the trapping of a highly degenerate Bose gas of excitons in laser induced traps.
Tri Alpha Energy's experimental program has demonstrated reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection. The world's largest compact-toroid device, C-2U, was upgraded from C-2 with the following key system upgrades: increased total NB input power from ~4 MW (20 keV hydrogen) to 10+ MW (15 keV hydrogen) with tilted injection angle; enhanced edge-biasing capability inside of each end divertor for boundary/stability control. C-2U experiments with those upgraded systems have successfully demonstrated dramatic improvements in FRC performance and achieved sustainment of advanced beam-driven FRCs with a macroscopically stable and hot plasma state for up to 5+ ms. Plasma diamagnetism in the best discharges has reached record lifetimes of over 11 ms, timescales twice as long as C-2. The C-2U plasma performance, including the sustainment feature, has a strong correlation with NB pulse duration, with the diamagnetism persisting even several milliseconds after NB termination due to the accumulated fast-ion population by NB injection. Power balance analysis shows substantial improvements in equilibrium and transport parameters, whereby electron energy confinement time strongly correlates with electron temperature; i.e. the confinement time in C-2U scales strongly with a positive power of T e .
TAE Technologies' research is devoted to producing high temperature, stable, long-lived field-reversed configuration (FRC) plasmas by neutral-beam injection (NBI) and edge biasing/control. The newly constructed C-2W experimental device (also called "Norman") is the world's largest compact-toroid (CT) device, which has several key upgrades from the preceding C-2U device such as higher input power and longer pulse duration of the NBI system as well as installation of inner divertors with upgraded electrode biasing systems. Initial C-2W experiments have successfully demonstrated a robust FRC formation as well as its translation into the confinement vessel through the newly installed inner divertor with adequate guide magnetic field. They also produced dramatically improved initial FRC parameters with higher plasma temperatures (Te up to 300 eV; total electron and ion temperature >1.5 keV) and more trapped flux (up to ~15 mWb, based on rigid-rotor model) inside the FRC immediately after the merger of collided two CTs in the confinement section. As for effective edge biasing/control on FRC stabilization, a number of edge biasing schemes have been tried via open-fieldlines, in which concentric electrodes located in both inner and outer divertors as well as end-on plasma guns are electrically biased independently. As a result of effective outer-divertor electrode biasing alone, FRC plasma diamagnetism duration has reached up to ~9 ms which is equivalent to C-2U plasma duration. Magnetic field flaring/expansion in both inner and outer divertors plays an important role in creating a thermal insulation on open-field-lines to reduce a loss rate of electrons, which leads to improvement of the edge as well as core FRC confinement properties.
The Child–Langmuir law limits the steady-state current density across a one-dimensional planar diode. While it is known that the peak current density can surpass this limit when the boundary conditions vary in time, it remains an open question of whether the average current can violate the Child–Langmuir limit under time-dependent conditions. For the case where the applied voltage is constant but the electric field at the cathode is allowed to vary in time, one-dimensional particle-in-cell simulations suggest that such a violation is impossible. Although a formal proof is not given, an upper bound on the time-averaged current density is offered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.