A numerical study on the flow in a three stage low pressure industrial steam turbine with conical friction bolts in the last stage and lacing wires in the penultimate stage is presented and analyzed. Structured high-resolution hexahedral meshes are used for all three stages and the meshing methodology is shown for the rotor with friction bolts and blade reinforcements. Modern three-dimensional CFD with a non-equilibrium wet steam model is used to examine the aero-thermodynamic effects of the part-span connectors. A performance assessment of the coupled blades at part load, design and overload condition is presented and compared with measurement data from an industrial steam turbine test rig. Detailed flow field analyses and a comparison of blade loading between configurations with and without part-span connectors are presented in this paper. The results show significant interaction of the cross flow vortex along the part-span connector with the blade passage flow causing aerodynamic losses. This is the first time that part-span connectors are being analyzed using a non-equilibrium wet steam model. It is shown that additional wetness losses are induced by these elements.
An experimental and numerical study on the flow in a three stage low pressure (LP) industrial steam turbine is presented and analyzed. The investigated LP section features conical friction bolts in the last and a lacing wire in the penultimate rotor blade row. These part-span connectors (PSC) allow safe turbine operation over an extremely wide range and even in blade resonance condition. However, additional losses are generated which affect the performance of the turbine. In order to capture their impact on the flow field, extensive measurements with pneumatic multi-hole probes in an industrial steam turbine test rig have been carried out. State-of-the-art three-dimensional CFD applying a non-equilibrium steam (NES) model is used to examine the aero-thermodynamic effects of the PSC on the wet steam flow. A detailed comparison between measurement data and CFD results is performed for several operating conditions. The investigation shows that the applied CFD model is able to capture the three-dimensional flow field in LP steam turbine blading with PSC and the total pressure reduction due to the PSC with a generally good agreement to measured values and is therefore sufficient for engineering practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.