Association-mapping methods promise to overcome the limitations of linkage-mapping methods. The main objectives of this study were to (i) evaluate various methods for association mapping in the autogamous species wheat using an empirical data set, (ii) determine a marker-based kinship matrix using a restricted maximum-likelihood (REML) estimate of the probability of two alleles at the same locus being identical in state but not identical by descent, and (iii) compare the results of association-mapping approaches based on adjusted entry means (two-step approaches) with the results of approaches in which the phenotypic data analysis and the association analysis were performed in one step (one-step approaches). On the basis of the phenotypic and genotypic data of 303 soft winter wheat (Triticum aestivum L.) inbreds, various association-mapping methods were evaluated. Spearman's rank correlation between P-values calculated on the basis of one-and two-stage association-mapping methods ranged from 0.63 to 0.93. The mixedmodel association-mapping approaches using a kinship matrix estimated by REML are more appropriate for association mapping than the recently proposed QK method with respect to (i) the adherence to the nominal a-level and (ii) the adjusted power for detection of quantitative trait loci. Furthermore, we showed that our data set could be analyzed by using two-step approaches of the proposed association-mapping method without substantially increasing the empirical type I error rate in comparison to the corresponding one-step approaches.
Information about the extent and genomic distribution of linkage disequilibrium (LD) is of fundamental importance for association mapping. The main objectives of this study were to (1) investigate genetic diversity within germplasm groups of elite European maize (Zea mays L.) inbred lines, (2) examine the population structure of elite European maize germplasm, and (3) determine the extent and genomic distribution of LD between pairs of simple sequence repeat (SSR) markers. We examined genetic diversity and LD in a cross section of European and US elite breeding material comprising 147 inbred lines genotyped with 100 SSR markers. For gene diversity within each group, significant (P<0.05) differences existed among the groups. The LD was significant (P<0.05) for 49% of the SSR marker pairs in the 80 flint lines and for 56% of the SSR marker pairs in the 57 dent lines. The ratio of linked to unlinked loci in LD was 1.1 for both germplasm groups. The high incidence of LD suggests that the extent of LD between SSR markers should allow the detection of marker-phenotype associations in a genome scan. However, our results also indicate that a high proportion of the observed LD is generated by forces, such as relatedness, population stratification, and genetic drift, which cause a high risk of detecting false positives in association mapping.
Primary causes of heterosis are still unknown. Our goal was to investigate the extent and underlying genetic causes of heterosis for five biomass-related traits in Arabidopsis thaliana. We (i) investigated the relative contribution of dominance and epistatic effects to heterosis in the hybrid C24 3 Col-0 by generation means analysis and estimates of variance components based on a triple testcross (TTC) design with recombinant inbred lines (RILs), (ii) estimated the average degree of dominance, and (iii) examined the importance of reciprocal and maternal effects in this cross. In total, 234 RILs were crossed to parental lines and their F 1 's. Midparent heterosis (MPH) was high for rosette diameter at 22 days after sowing (DAS) and 29 DAS, growth rate (GR), and biomass yield (BY). Using the F 2 -metric, directional dominance prevailed for the majority of traits studied but reciprocal and maternal effects were not significant. Additive and dominance variances were significant for all traits. Additive 3 additive and dominance 3 dominance variances were significant for all traits but GR. We conclude that dominance as well as digenic and possibly higher-order epistatic effects play an important role in heterosis for biomassrelated traits. Our results encourage the use of Arabidopsis hybrid C24 3 Col-0 for identification and description of quantitative trait loci (QTL) for heterosis for biomass-related traits and further genomic studies.
Landraces of maize represent a valuable genetic resource for breeding and genetic studies. Using simple sequence repeat (SSR) markers, we analysed five flint maize populations from Central Europe that had played an important role in the pre-hybrid era in Germany. Our objectives were to (1) investigate the molecular genetic diversity within and among the populations based on the SSR analysis of individuals, (2) compare these results of the SSR analysis based on individuals with those based on bulks, (3) examine genotype frequencies for deviations from Hardy-Weinberg equilibrium (HWE) at individual loci, and (4) test for linkage disequilibrium (LD) between pairs of loci within populations. Thirty individuals and their bulked DNA per population were fingerprinted with 55 SSR markers. Across all populations, 46.7% of the SSR markers deviated significantly from HWE, with an excess of homozygosity in 97% of the cases. This excess of homozygosity can largely be explained by experimental errors during the amplification of SSRs apart from genuine genetic causes. Allele frequencies of the SSR analyses of individuals and bulks were significantly correlated (r=0.85, P< 0.01), suggesting that SSR analysis of bulks is very cost-effective for large-scale molecular characterisation of germ plasm collections. No evidence for genome-wide LD among pairs of loci was observed, indicating that the populations are well suited for high resolution association mapping studies.
It has been claimed that the system that delivers the products of plant breeding reduces the diversity of cultivated varieties leading to an increased genetic vulnerability. The main goal of our study was to monitor the temporal trends in genetic diversity over the past five decades among maize cultivars with the largest acreage in Central Europe. Our objectives were to (1) investigate how much of the genetic diversity present in important adapted open-pollinated varieties (OPVs) has been captured in the elite flint germ plasm pool, (2) examine changes in the genetic diversity among the most important commercial hybrids as well as in their dent and flint parents, (3) analyze temporal changes in allele frequencies between the dent and flint parental inbreds, and (4) investigate linkage disequilibrium (LD) trends between pairs of loci within the set of parental dent and flint lines. We examined 30 individuals of five prominent OPVs from Central Europe, 85 maize hybrids of economic importance, and their dent and flint parental components with 55 SSRs. LD was significant at probability level P=0.01 for 20.2% of the SSR marker pairs in the 82 dent lines and for 17.2% in the 66 flint lines. The dent and flint heterotic groups were clearly separated already at the beginning of hybrid breeding in Central Europe. Furthermore, the genetic variation within and among varieties decreased significantly during the five decades. The five OPVs contain numerous unique alleles that were absent in the elite flint pool. Consequently, OPVs could present useful sources for broadening the genetic base of elite maize breeding germ plasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.