BackgroundAdvanced glycation end products (AGEs) play a role in the development of late complications and atherosclerosis in diabetes by engaging the receptor for advanced glycation end products, RAGE. Receptor binding leads to activation of the vascular endothelium and increased inflammation in the vessel wall. The soluble variants of the receptor, endogenous secretory RAGE (esRAGE) and the cleaved cell-surface part of RAGE, which together comprise soluble RAGE (sRAGE), are suggested to have a protective effect acting as decoys for RAGE. We aimed to test whether high levels of soluble variants of RAGE could be protective against atherosclerosis development.MethodsParticipants in the prospective atherosclerosis and childhood diabetes study were examined at baseline (aged 8–18) and at follow-up after 5 years. Both sRAGE and esRAGE were measured by immunoassay in 299 patients with type 1 diabetes and 112 healthy controls at baseline and 241 patients and 128 controls at follow-up. The AGEs methylglyoxal-derived hydroimidazolone-1 (MG-H1) and carboxymethyllysine (CML) were measured by immunoassay. The surrogate markers of atherosclerosis assessed were carotid intima-media thickness (cIMT), C-reactive protein (CRP) and Young’s modulus, measures of arterial wall thickness, inflammation and arterial stiffness, respectively.ResultsLevels of sRAGE and esRAGE correlated strongly both at baseline and at follow-up in both diabetes patients and controls. With increasing age, mean values of both variants declined, independent of gender, diabetes or pubertal stage. In the diabetes group, multiple regression analysis showed a positive association between both variants of soluble RAGE and cIMT. There was no significant relationship with Young’s modulus, but a negative association between sRAGE at baseline and CRP at follow-up. The ratios between the AGEs and the variants of soluble RAGE were increased in diabetes patients compared to controls.ConclusionsThe results show a possible protective effect of high levels of sRAGE at baseline against inflammation 5 years later, but not on arterial stiffness or wall thickness, in this cohort of adolescents and young adults with T1D.
BackgroundPatients with type 1 diabetes (T1D) are at increased risk of cardiovascular disease (CVD). Measures of high-density lipoprotein (HDL) function provide a better risk estimate for future CVD events than serum levels of HDL cholesterol. The objective of this study was to evaluate HDL function in T1D patients shortly after disease onset compared with healthy control subjects.MethodsParticipants in the atherosclerosis and childhood diabetes study were examined at baseline and after 5 years. At baseline, the cohort included 293 T1D patients with a mean age of 13.7 years and mean HbA1c of 8.4%, along with 111 healthy control subjects. Their HDL function, quantified by HDL-apoA-I exchange (HAE), was assessed at both time points. HAE is a measure of HDL’s dynamic property, specifically its ability to release lipid-poor apolipoprotein A-I (apoA-I), an essential step in reverse cholesterol transport.ResultsThe HAE-apoA-I ratio, reflecting the HDL function per concentration unit apoA-I, was significantly lower in the diabetes group both at baseline, 0.33 (SD = 0.06) versus 0.36 (SD = 0.06) %HAE/mg/dL, p < 0.001 and at follow-up, 0.34 (SD = 0.06) versus 0.36 (SD = 0.06) %HAE/mg/dL, p = 0.003. HAE-apoA-I ratio was significantly and inversely correlated with HbA1c in the diabetes group. Over the 5 years of the study, the mean HAE-apoA-I ratio remained consistent in both groups. Individual changes were less than 15% for half of the study participants.ConclusionsThis study shows reduced HDL function, quantified as HAE-apoA-I ratio, in children and young adults with T1D compared with healthy control subjects. The differences in HDL function appeared shortly after disease onset and persisted over time.
Background: Advanced protein glycation is an important mechanism for the development of late diabetic complications including atherosclerosis. Methylglyoxal-derived hydroimidazolone-1 is the most abundant advanced glycation end product in human plasma. Aim: To investigate the relationship between methylglyoxal-derived hydroimidazolone-1 and early signs of atherosclerosis in children and adolescents with type 1 diabetes and healthy controls. Methods: A total of 314 diabetes patients aged 8-18 years were compared with 120 healthy controls. Serum methylglyoxalderived hydroimidazolone-1 was measured by immunoassay. Atherosclerosis was evaluated by assessing carotid intimamedia thickness by ultrasound, arterial stiffness by Young's modulus and inflammation by C-reactive protein.Results: Methylglyoxal-derived hydroimidazolone-1 was significantly increased in the diabetes group compared with controls, 155.3 (standard deviation (SD) = 41.0) versus 143.0 (SD = 35.1) U/mL, p = 0.003, as was C-reactive protein, median 0.51 (0.27, 1.83) versus 0.31 (0.19, 0.67) mg/L, p < 0.001. There was no significant difference between the groups regarding carotid intima-media thickness or Young's modulus. Multiple regression analysis showed a significant positive association between methylglyoxal-derived hydroimidazolone-1 and C-reactive protein in the diabetes group. Conclusion: Serum levels of methylglyoxal-derived hydroimidazolone-1 in diabetes patients are increased and associated with low-grade inflammation, but not yet arterial stiffness or wall thickness. This indicates that methylglyoxal-derived hydroimidazolone-1 may be important in the early phase of the accelerated atherosclerotic process in diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.