Biological invasions cause ecological and economic impacts across the globe. However, it is unclear whether there are strong patterns in terms of their major effects, how the vulnerability of different ecosystems varies and which ecosystem services are at greatest risk. We present a global meta-analysis of 199 articles reporting 1041 field studies that in total describe the impacts of 135 alien plant taxa on resident species, communities and ecosystems. Across studies, alien plants had a significant effect in 11 of 24 different types of impact assessed. The magnitude and direction of the impact varied both within and between different types of impact. On average, abundance and diversity of the resident species decreased in invaded sites, whereas primary production and several ecosystem processes were enhanced. While alien N-fixing species had greater impacts on N-cycling variables, they did not consistently affect other impact types. The magnitude of the impacts was not significantly different between island and mainland ecosystems. Overall, alien species impacts are heterogeneous and not unidirectional even within particular impact types. Our analysis also reveals that by the time changes in nutrient cycling are detected, major impacts on plant species and communities are likely to have already occurred.
With the growing body of literature assessing the impact of invasive alien plants on resident species and ecosystems, a comprehensive assessment of the relationship between invasive species traits and environmental settings of invasion on the characteristics of impacts is needed. Based on 287 publications with 1551 individual cases that addressed the impact of 167 invasive plant species belonging to 49 families, we present the first global overview of frequencies of significant and non-significant ecological impacts and their directions on 15 outcomes related to the responses of resident populations, species, communities and ecosystems. Species and community outcomes tend to decline following invasions, especially those for plants, but the abundance and richness of the soil biota, as well as concentrations of soil nutrients and water, more often increase than decrease following invasion. Data mining tools revealed that invasive plants exert consistent significant impacts on some outcomes (survival of resident biota, activity of resident animals, resident community productivity, mineral and nutrient content in plant tissues, and fire frequency and intensity), whereas for outcomes at the community level, such as species richness, diversity and soil resources, the significance of impacts is determined by interactions between species traits and the biome invaded. The latter outcomes are most likely to be impacted by annual grasses, and by wind pollinated trees invading mediterranean or tropical biomes. One of the clearest signals in this analysis is that invasive plants are far more likely to cause significant impacts on resident plant and animal richness on islands rather than mainland. This study shows that there is no universal measure of impact and the pattern observed depends on the ecological measure examined. Although impact is strongly context dependent, some species traits, especially life form, stature and pollination syndrome, may provide a means to predict impact, regardless of the particular habitat and geographical region invaded.
Summary 1.Much attention has been paid to negative effects of alien species on resident communities but studies that quantify community-level effects of a number of invasive plants are scarce. We address this issue by assessing the impact of 13 species invasive in the Czech Republic on a wide range of plant communities. 2. Vegetation in invaded and uninvaded plots with similar site conditions was sampled. All species of vascular plants were recorded, their covers were estimated and used as importance values for calculating the Shannon diversity index H ′ , evenness J and Sørensen index of similarity between invaded and uninvaded vegetation. 3. With the exception of two invasive species, species richness, diversity and evenness were reduced in invaded plots. Species exhibiting the greatest impact reduced species numbers per plot and the total number of species recorded in the communities sampled by almost 90%. A strong reduction of species number at the plot scale resulted in a marked reduction in the total species number at the landscape scale, and in less similarity between invaded and uninvaded vegetation. The decrease in species richness in invaded compared to uninvaded plots is largely driven by the identity of the invading species, whereas the major determinants of the decrease in Shannon diversity and evenness are the cover and height of invading species, and differences between height and cover of invading and dominant native species, independent of species identity. 4. Synthesis. Management decisions based on impact need to distinguish between invasive species, as their effects on diversity and composition of resident vegetation differ largely. Tall invading species capable of forming populations with the cover markedly greater than that of native dominant species exert the most severe effects on species diversity and evenness. Since a strong impact on the community scale is associated with reduction in species diversity at higher scales, invaders with a high impact represent a serious hazard to the landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.