This paper presents a thermal investigation of lightweight on-board receiver modules of wireless power transfer systems for electric vehicles. The studied modules are capable of receiving up to 11 kW at a resonance frequency of 85 kHz over a distance of 110–160 mm. The receiver modules were built as sandwich and space–frame concept to design stiff and lightweight structures. The high transmission power of automotive wireless power transfer systems combined with the multi-part assembly of receiver modules led to challenges in heat management. To address this, the physical behaviour of the proposed lightweight concepts were studied on component and system level using a hardware-in-the-loop testing facility for wireless power transfer systems. Special emphasis was laid on the validation of a thermal simulation model, which uses analytical calculated power losses taking into account their temperature dependency. The proposed simulation model is consistent with the experimental validation of the critical active components. The performed systematic studies build the basis for a more sophisticated thermal dimensioning of various constructions for wireless power transfer modules.
Fiber-reinforced polymers are increasingly being used, especially in lightweight structures. Here, the effective adaptation of mechanical or physical properties to the necessary application or manufacturing requirements plays an important role. In this context, the alignment of reinforcing fibers is often hindered by manufacturing aspects. To achieve graded or locally adjusted alignment of different fiber lengths, common manufacturing technologies such as injection molding or compression molding need to be supported by the external non-mechanical process. Magnetic or electrostatic fields seem to be particularly suitable for this purpose. The present work shows a first simulation study of the alignment of magnetic particles in polymer matrices as a function of different parameters. The parameters studied are the viscosity of the surrounding polymer as a function of the focused processing methods, the fiber length, the thickness and permeability of the magnetic fiber coatings, and the magnetic flux density. The novelty of the presented works is in the development of an advanced simulation model that allows the simulative representation and reveal of the fluid–structure interaction, the influences of these parameters on the inducible magnetic torque and fiber alignment of a single fiber. Accordingly, the greatest influence on fiber alignment is caused by the magnetic flux density and the coating material.
The dimensioning of wireless power transfer systems requires compliance with safety standards for human exposure and electromagnetic compatibility. For this reason, shielding is conventionally carried out with heavy and costly plates. In order to evaluate a lightweight and low-cost alternative, this paper presents a comprehensive investigation of the shielding effectiveness of metal meshes in magnetic fields of wireless power transfer systems, including analytical modeling and experimental validation. Special emphasis is laid on the validation of novel analytical approximation approaches to model the anisotropic electrical conductivity of metal meshes. The proposed approaches show good consistency of the mean value taking into account warp and weft direction, whereas the modeling of the anisotropic behavior is not sufficiently accurately represented. Using the calculated electrical conductivity, the analytical modeling of the maximum shielding effectiveness based on a literature-known approach is very consistent for the experimental validation. Thus, the performed studies provide a significant contribution to the dimensioning of metal meshes as shielding for wireless power transfer systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.