A coupled thermal-microstructural simulation model was developed to estimate the thermal history in a eutectoid steel wire rod under continuous cooling and forced-convection. The model coupled the phenomena of heat transfer, phase transformation and estimation of the cooling boundary condition. The thermal histories were analyzed at different cooling rates to emulate the forced-convection conditions by air-jet as in the controlled cooling conveyor. The thermal histories were acquired and used to calculate the forced-convection heat transfer coefficients through the solution of the Inverse Heat Conduction Problem, while the phase transformation was approximated with the Johnson–Mehl–Avrami–Kolmogorov (JMAK) kinetic model. From the heat transfer coefficients and the kinetic parameters, a user-defined function (UDF) was coded and employed in the ANSYS Fluent® software. The model results were compared and validated with the experimental histories, obtaining a good agreement between both responses, while the microstructural evolution of the pearlite was validated using Scanning Electron Microscopy (SEM) and Vickers microhardness. It was found that specimen diameter and air velocity are the main variables to modify the undercooling and therefore the pearlite interlamellar spacing.
A non-isothermal transformation model was proposed to determine the austenite formation kinetics in a steel alloyed with 2.6% wt. Si by dilatometric analysis, considering that the nucleation mechanism does not change with the heating rate. From the dilatometric analysis, it was observed that the austenite formation occurs in two stages; critical temperatures, degree and austenite formation rate were determined. The activation energies associated with each of the stages were obtained employing the Kissinger method (226.67 and 198.37 kJ mol−1 for the first and second stage) which was used in concert with the austenite formation rate in the non-isothermal model as a first approximation, with acceptable results in the second stage, but not in the first due to the activation energies magnitude. Then, the activation energies were adjusted by minimizing the minimal squares error between estimated and experimental austenite formation degree, obtaining values of 158.50 kJ mol−1 for the first and 165.50 kJ mol−1 for the second stage. These values are consistent with those reported for the diffusion of carbon in austenite-FCC in silicon steels. With these activation energies it was possible to predict the austenite formation degree with a better level of convergence when implementing the non-isothermal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.