BackgroundWhole-exome sequencing (WES) consists in the capture, sequencing and analysis of all exons in the human genome. Originally developed in the research context, this technology is now increasingly used clinically to inform patient care. The implementation of WES into healthcare poses significant organizational, regulatory, and ethical hurdles, which are widely discussed in the literature.MethodsIn order to inform future policy decisions on the integration of WES into standard clinical practice, we performed a systematic literature review to identify the most important challenges directly reported by technology users.ResultsOut of 2094 articles, we selected and analyzed 147 which reported a total of 23 different challenges linked to the production, analysis, reporting and sharing of patients’ WES data. Interpretation of variants of unknown significance, incidental findings, and the cost and reimbursement of WES-based tests were the most reported challenges across all articles.ConclusionsWES is already used in the clinical setting, and may soon be considered the standard of care for specific medical conditions. Yet, technology users are calling for certain standards and guidelines to be published before this technology replaces more focused approaches such as gene panels sequencing. In addition, a number of infrastructural adjustments will have to be made for clinics to store, process and analyze the amounts of data produced by WES.Electronic supplementary materialThe online version of this article (doi:10.1186/s12920-016-0213-6) contains supplementary material, which is available to authorized users.
Genomic medicine applications have the potential to considerably improve health care in developing countries in the coming years. However, if developing countries do not improve their capacity for research and development (R&D) in the field, they might be left out of the genomics revolution. Large-scale and widely accessible databases for storing and analyzing genomic data are crucial tools for the advancement of genomic medicine. Building developing countries' capacity in genomics is accordingly closely linked to their involvement in international human genomics research initiatives. The purpose of this paper is to conduct a pilot study on the impact of international open science genomics projects on capacity building in R&D in developing countries. Using indicators we developed in previous work to measure the performance of international open science genomics projects, we analyse the policies and practices of four key projects in the field: the International HapMap Project, the Human Heredity and Health in Africa Initiative, the Malaria Genomic Epidemiology Network and the Structural Genomics Consortium. The results show that these projects play an important role in genomics capacity building in developing countries, but play a more limited role with regard to the potential redistribution of the benefits of research to the populations of these countries. We further suggest concrete initiatives that could facilitate the involvement of researchers from developing countries in the international genomics research community and accelerate capacity building in the developing world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.