To improve our understanding of the role of phytoplankton for marine ecosystems and global biogeochemical cycles, information on the global distribution of major phytoplankton groups is essential. Although algorithms have been developed to assess phytoplankton diversity from space for over two decades, so far the application of these data sets has been limited. This scientific roadmap identifies user needs, summarizes the current state of the art, and pinpoints major gaps in long-term objectives to deliver space-derived phytoplankton diversity data that meets the user requirements. These major gaps in using ocean color to estimate phytoplankton community structure were identified as: (a) the mismatch between satellite, in situ and model data on phytoplankton composition, (b) the lack of quantitative uncertainty estimates provided with satellite data, (c) the spectral limitation of current sensors to enable the full exploitation of backscattered sunlight, and (d) the very limited applicability of satellite algorithms determining phytoplankton composition for regional, especially coastal or inland, waters. Recommendation for actions include but are not limited to: (i) an increased communication and round-robin exercises among and within the related expert groups, (ii) the launching of higher spectrally and spatially resolved sensors, (iii) the development of algorithms that exploit
The processing scheme of a novel in-water algorithm for the retrieval of ocean color products from Sentinel-3 OLCI is introduced. The algorithm consists of several blended neural networks that are specialized for 13 different optical water classes. These comprise clearest natural waters but also waters reaching the frontiers of marine optical remote sensing, namely extreme absorbing, or scattering waters. Considered chlorophyll concentrations reach up to 200 mg m −3 , non-algae particle concentrations up to 1,500 g m −3 , and the absorption coefficient of colored dissolved organic matter at 440 nm is up to 20 m −1 . The algorithm generates different concentrations of water constituents, inherent and apparent optical properties, and a color index. In addition, all products are delivered with an uncertainty estimate. A baseline validation of the products is provided for various water types. We conclude that the algorithm is suitable for the remote sensing estimation of water properties and constituents of most natural waters.
Abstract:The emergence of hyperspectral optical satellite sensors for ocean observation provides potential for more detailed information from aquatic ecosystems. The German hyperspectral satellite mission EnMAP (enmap.org) currently in the production phase is supported by a project to explore the capability of using EnMAP data and other future hyperspectral data from space. One task is to identify phytoplankton taxonomic groups. To fulfill this objective, on the basis of laboratory-measured absorption coefficients of phytoplankton cultures (aph(λ)) and corresponding simulated remote sensing reflectance spectra (Rrs(λ)), we examined the performance of spectral fourth-derivative analysis and clustering techniques to differentiate six taxonomic groups. We compared different sources of input data, namely aph(λ), Rrs(λ), and the absorption of water compounds obtained from inversion of the Rrs(λ)) spectra using a quasi-analytical algorithm (QAA). Rrs(λ) was tested as it can be directly obtained from hyperspectral sensors. The last one was tested as expected influences of the spectral features of pure water absorption on Rrs(λ) could be avoided after subtracting it from the inverted total absorption. Results showed that derivative analysis of measured aph(λ) spectra performed best with only a few misclassified cultures. Based on Rrs(λ) spectra, the accuracy of this differentiation decreased but the OPEN ACCESSRemote Sens. 2015, 7 14782 performance was partly restored if wavelengths of strong water absorption were excluded and chlorophyll concentrations were higher than 1 mg•m −3 . When based on QAA-inverted absorption spectra, the differentiation was less precise due to loss of information at longer wavelengths. This analysis showed that, compared to inverted absorption spectra from restricted inversion models, hyperspectral Rrs(λ) is potentially suitable input data for the differentiation of phytoplankton taxonomic groups in prospective EnMAP applications, though still a challenge at low algal concentrations.
The colored dissolved organic matter (CDOM) variable is the standard measure of humic substance in waters optics. CDOM is optically characterized by its spectral absorption coefficient, a CDOM at at reference wavelength (e.g., ≈ 440 nm). Retrieval of CDOM is traditionally done using bio-optical models. As an alternative, this paper presents a comparison of five machine learning methods applied to Sentinel-2 and Sentinel-3 simulated reflectance (R rs) data for the retrieval of CDOM: regularized linear regression (RLR), random forest regression (RFR), kernel ridge regression (KRR), Gaussian process regression (GPR) and support vector machines (SVR). Two different datasets of radiative transfer simulations are used for the development and training of the machine learning regression approaches. Statistics comparison with well-established polynomial regression algorithms shows optimistic results for all models and band combinations, highlighting the good performance of the methods, especially the GPR approach, when all bands are used as input. Application to an atmospheric corrected OLCI image using the reflectance derived form the alternative neural network (Case 2 Regional) is also shown. Python scripts and notebooks are provided to interested users.
This paper reviews the state of the art of protocols for the measurement of downwelling irradiance in the context of Fiducial Reference Measurements (FRM) of water reflectance for satellite validation. The measurement of water reflectance requires the measurement of water-leaving radiance and downwelling irradiance just above water. For the latter, there are four generic families of method, using: (1) an above-water upward-pointing irradiance sensor; (2) an above-water downward-pointing radiance sensor and a reflective plaque; (3) a Sun-pointing radiance sensor (sunphotometer); or (4) an underwater upward-pointing irradiance sensor deployed at different depths. Each method—except for the fourth, which is considered obsolete for the measurement of above-water downwelling irradiance—is described generically in the FRM context with reference to the measurement equation, documented implementations, and the intra-method diversity of deployment platform and practice. Ideal measurement conditions are stated, practical recommendations are provided on best practice, and guidelines for estimating the measurement uncertainty are provided for each protocol-related component of the measurement uncertainty budget. The state of the art for the measurement of downwelling irradiance is summarized, future perspectives are outlined, and key debates such as the use of reflectance plaques with calibrated or uncalibrated radiometers are presented. This review is based on the practice and studies of the aquatic optics community and the validation of water reflectance, but is also relevant to land radiation monitoring and the validation of satellite-derived land surface reflectance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.