Background: In animal studies long-term stretching interventions up to several hours per day have shown large increases in muscle mass as well as maximal strength. The aim of this study was to investigate the effects of a long-term stretching on maximal strength, muscle cross sectional area (MCSA) and range of motion (ROM) in humans.Methods: 52 subjects were divided into an Intervention group (IG, n = 27) and a control group (CG, n = 25). IG stretched the plantar flexors for one hour per day for six weeks using an orthosis. Stretching was performed on one leg only to investigate the contralateral force transfer. Maximal isometric strength (MIS) and 1RM were both measured in extended knee joint. Furthermore, we investigated the MCSA of IG in the lateral head of the gastrocnemius (LG) using sonography. Additionally, ROM in the upper ankle was investigated via the functional “knee to wall stretch” test (KtW) and a goniometer device on the orthosis. A two-way ANOVA was performed in data analysis, using the Scheffé Test as post-hoc test.Results: There were high time-effects (p = 0.003, ƞ² = 0.090) and high interaction-effect (p < 0.001, ƞ²=0.387) for MIS and also high time-effects (p < 0.001, ƞ²=0.193) and interaction-effects (p < 0.001, ƞ²=0,362) for 1RM testing. Furthermore, we measured a significant increase of 15.2% in MCSA of LG with high time-effect (p < 0.001, ƞ²=0.545) and high interaction-effect (p=0.015, ƞ²=0.406). In ROM we found in both tests significant increases up to 27.3% with moderate time-effect (p < 0.001, ƞ²=0.129) and high interaction-effect (p < 0.001, ƞ²=0.199). Additionally, we measured significant contralateral force transfers in maximal strength tests of 11.4% (p < 0.001) in 1RM test and 1.4% (p=0.462) in MIS test. Overall, there we no significant effects in control situations for any parameter (CG and non-intervened leg of IG).Discussion: We hypothesize stretching-induced muscle damage comparable to effects of mechanical load of strength training, that led to hypertrophy and thus to an increase in maximal strength. Increases in ROM could be attributed to longitudinal hypertrophy effects, e.g., increase in serial sarcomeres. Measured cross-education effects could be explained by central neural adaptations due to stimulation of the stretched muscles.
Rebuilding strength capacity is of crucial importance in rehabilitation since significant atrophy due to immobilization after injury and/or surgery can be assumed. To increase maximal strength (MSt), strength training is commonly used. The literature regarding animal studies show that long-lasting static stretching (LStr) interventions can also produce significant improvements in MSt with a dose–response relationship, with stretching times ranging from 30 min to 24 h per day; however, there is limited evidence in human studies. Consequently, the aim of this study is to investigate the dose–response relationship of long-lasting static stretching on MSt. A total of 70 active participants (f = 30, m = 39; age: 27.4 ± 4.4 years; height: 175.8 ± 2.1 cm; and weight: 79.5 ± 5.9 kg) were divided into three groups: IG1 and IG2 both performed unilateral stretching continuously for one (IG1) or two hours (IG2), respectively, per day for six weeks, while the CG served as the non-intervened control. MSt was determined in the plantar flexors in the intervened as well as in the non-intervened control leg to investigate the contralateral force transfer. Two-way ANOVA showed significant interaction effects for MSt in the intervened leg (ƞ 2 = 0.325, p < 0.001) and in the contralateral control leg (ƞ 2 = 0.123, p = 0.009), dependent upon stretching time. From this, it can be hypothesized that stretching duration had an influence on MSt increases, but both durations were sufficient to induce significant enhancements in MSt. Thus, possible applications in rehabilitation can be assumed, e.g., if no strength training can be performed, atrophy could instead be reduced by performing long-lasting static stretch training.
Measuring maximal strength (MSt) is a very common performance diagnoses, especially in elite and competitive sports. The most popular procedure in test batteries is to test the one repetition maximum (1RM). Since testing maximum dynamic strength is very time consuming, it often suggested to use isometric testing conditions instead. This suggestion is based on the assumption that the high Pearson correlation coefficients of r ≥ 0.7 between isometric and dynamic conditions indicate that both tests would provide similar measures of MSt. However, calculating r provides information about the relationship between two parameters, but does not provide any statement about the agreement or concordance of two testing procedures. Hence, to assess replaceability, the concordance correlation coefficient (ρc) and the Bland-Altman analysis including the mean absolute error (MAE) and the mean absolute percentage error (MAPE) seem to be more appropriate. Therefore, an exemplary model based on r = 0.55 showed ρc = 0.53, A MAE of 413.58 N and a MAPE = 23.6% with a range of −1,000–800 N within 95% Confidence interval (95%CI), while r = 0.7 and 0.92 showed ρc = 0.68 with a MAE = 304.51N/MAPE = 17.4% with a range of −750 N–600 N within a 95% CI and ρc = 0.9 with a MAE = 139.99/MAPE = 7.1% with a range of −200–450 N within a 95% CI, respectively. This model illustrates the limited validity of correlation coefficients to evaluate the replaceability of two testing procedures. Interpretation and classification of ρc, MAE and MAPE seem to depend on expected changes of the measured parameter. A MAPE of about 17% between two testing procedures can be assumed to be intolerably high.
In basketball high intensity jumping and sprinting performance is of high importance. There seems to be a relationship between maximal strength (MSt) and jumping performance in general, but influence of MSt in the plantar flexors and jumping performance seems not to be investigated very well. Thus, the aim of this study was to investigate the influence of MSt in the plantar flexors on jumping performance. 37 young elite basketball players were included (age: 13.9±1.8 years; weight: 66.4±16.8 kg; height: 179.21±13.24 cm) and countermovement jump (CMJ) and squat jump (SJ) height as well as unilateral and bilateral maximal isometric contraction in the plantar flexors with bended knee joint were assessed. Pearson correlations were calculated for MSt and jumping performance and Bland-Altman Analysis was performed to determine the level of variance between bilateral MSt assessment and cumulated MSt value of unilateral measurements. This study shows a moderate influence of isometric MSt in the calf muscle on jumping performance, so it seems beneficial to include the training of the plantar flexors in the training routine of basketball players. When determining MSt, the bilateral force deficit must be considered, even though there was no influence on determined correlations.
Background: The reduction of muscle hypertonia and spasticity, as well as an increase in mobility, is an essential prerequisite for the amelioration of physiotherapeutical treatments. Repetitive peripheral magnetic nerve stimulation (rPMS) is a putative adjuvant therapy that improves the mobility of patients, but the underlying mechanism is not entirely clear. Methods: Thirty-eight participants underwent either an rPMS treatment ( N = 19) with a 5 Hz stimulation protocol in the posterior tibial nerve or sham stimulation ( N = 19). The stimulation took place over 5 min. The study was conducted in a pre-test post-test design with matched groups. Outcome measures were taken at the baseline and after following intervention. Results: The primary outcome was a significant reduction of the reflex activity of the soleus muscle, triggered by a computer-aided tendon-reflex impact. The pre-post differences of the tendon reflex response activity were −23.7% ( P < 0.001) for the treatment group. No significant effects showed in the sham stimulation group. Conclusion: Low-frequency magnetic stimulation (5 Hz rPMS) shows a substantial reduction of the tendon reflex amplitude. It seems to be an effective procedure to reduce muscular stiffness, increase mobility, and thus, makes the therapeutic effect of neuro-rehabilitation more effective. For this reason, the 5 Hz rPMS treatment might have the potential to be used as an adjuvant therapy in the rehabilitation of gait and posture control in patients suffering from limited mobility due to spasticity. The effect observed in this study should be investigated conjoined with the presented method in patients with impaired mobility due to spasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.