We study the two-dimensional Kane-Mele-Hubbard model at half filling by means
of quantum Monte Carlo simulations. We present a refined phase boundary for the
quantum spin liquid. The topological insulator at finite Hubbard interaction
strength is adiabatically connected to the groundstate of the Kane-Mele model.
In the presence of spin-orbit coupling, magnetic order at large Hubbard U is
restricted to the transverse direction. The transition from the topological
band insulator to the antiferromagnetic Mott insulator is in the universality
class of the three-dimensional XY model. The numerical data suggest that the
spin liquid to topological insulator and spin liquid to Mott insulator
transitions are both continuous.Comment: 13 pages, 10 figures; final version; new Figs. 4(b) and 8(b
Topological insulators have become one of the most active research areas in condensed matter physics. This article reviews progress on the topic of electronic correlation effects in the two-dimensional case, with a focus on systems with intrinsic spin-orbit coupling and numerical results. Topics addressed include an introduction to the noninteracting case, an overview of theoretical models, correlated topological band insulators, interaction-driven phase transitions, topological Mott insulators and fractional topological states, correlation effects on helical edge states, and topological invariants of interacting systems.
We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is mapped out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin liquid of the Hubbard model is robust against weak spin-orbit interaction, and is not adiabatically connected to the spin-Hall insulating state. Beyond a critical value of U > Uc both states are unstable toward magnetic ordering. In the quantum spin-Hall state we study the spin, charge and single-particle dynamics of the helical Luttinger liquid by retaining the Hubbard interaction only on a ribbon edge. The Hubbard interaction greatly suppresses charge currents along the edge and promotes edge magnetism, but leaves the single-particle signatures of the helical liquid intact.
We numerically investigate the critical behavior of the Hubbard model on the honeycomb and the π-flux lattice, which exhibits a direct transition from a Dirac semimetal to an antiferromagnetically ordered Mott insulator. We use projective auxiliary-field quantum Monte Carlo simulations and a careful finite-size scaling analysis that exploits approximately improved renormalization-group-invariant observables. This approach, which is successfully verified for the three-dimensional XY transition of the Kane-Mele-Hubbard model, allows us to extract estimates for the critical couplings and the critical exponents. The results confirm that the critical behavior for the semimetal to Mott insulator transition in the Hubbard model belongs to the Gross-Neveu-Heisenberg universality class on both lattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.