We give a consistent definition of generalised CP transformations in the context of discrete flavour symmetries. Non-trivial consistency conditions imply that every generalised CP transformation can be interpreted as a representation of an automorphism of the discrete group. This allows us to give consistent generalised CP transformations of popular flavour groups. We are able to clear up issues concerning recent claims about geometrical CP violation in models based on T , clarify the origin of "calculable phases" in ∆(27) and explain why apparently CP violating scalar potentials of A 4 result in a CP conserving ground state.
If the LHC does only find a Higgs boson in the low mass region and no other new physics, then one should reconsider scenarios where the Standard Model with three right-handed neutrinos is valid up to Planck scale. We assume in this spirit that the Standard Model couplings are remnants of quantum gravity which implies certain generic boundary conditions for the Higgs quartic coupling at Planck scale. This leads to Higgs mass predictions at the electroweak scale via renormalization group equations. We find that several physically well motivated conditions yield a range of Higgs masses from 127−142 GeV. We also argue that a random quartic Higgs coupling at the Planck scale favours MH > 150 GeV, which is clearly excluded. We discuss also the prospects for differentiating different boundary conditions imposed for λ(M pl ) at the LHC. A striking example is MH = 127 ± 5 GeV corresponding to λ(M pl ) = 0, which would imply that the quartic Higgs coupling at the electroweak scale is entirely radiatively generated.
The recent discovery of a non-zero value of the mixing angle θ 13 has ruled out tribimaximal mixing as the correct lepton mixing pattern generated by some discrete flavor symmetry (barring large next-to-leading order corrections in concrete models). In this work we assume that neutrinos are Majorana particles and perform a general scan of all finite discrete groups with order less than 1536 to obtain their predictions for lepton mixing angles. To our surprise, the scan of over one million groups only yields 3 interesting groups that give lepton mixing patterns which lie within 3-sigma of the current best global fit values. A systematic way to categorize such groups and the implications for flavor symmetry are discussed.
The LHC and other experiments show so far no sign of new physics and long-held beliefs about naturalness should be critically reexamined. We discuss therefore in this paper a model with a combined breaking of conformal and electroweak symmetry by a strongly coupled hidden sector. Even though the conformal symmetry is anomalous, this may still provide an explanation of the smallness of electroweak scale compared to the Planck scale. Specifically we start from a classically conformal model, in which a strongly coupled hidden sector undergoes spontaneous chiral symmetry breaking. A coupling via a real scalar field transmits the breaking scale to the Standard Model Higgs and triggers electroweak symmetry breaking. The model contains dark matter candidates in the form of dark pions, whose stability is being guaranteed by the flavor symmetry of hidden quark sector. We study its relic abundance and direct detection prospects with the Nambu-Jona-Lasinio method and discuss the phase transition in the dark sector as well as in the electroweak sector.
Assuming the Majorana nature of neutrinos, we recently performed a scan of leptonic mixing patterns derived from finite discrete groups of order less than 1536. Here we show that the 3 groups identified there as giving predictions close to experiment also contain another class of Abelian subgroups that predict an interesting leading-order quark mixing pattern where only the Cabibbo angle is generated at leading order. We further broaden our study by assuming that neutrinos are Dirac particles and find 4 groups of order up to 200 that can predict acceptable quark and leptonic mixing angles. Since large flavor groups allow for a multitude of leading-order mixing patterns, we define a measure that is suitable to compare the predictivity of a given flavor group, taking this fact into account. We give the result of this measure for a wide range of discrete flavor groups and identify the group ðZ 18 Â Z 6 Þ 2S 3 as being most predictive in the sense of this measure. We further discuss alternative measures and their implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.