The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a newly formed, global collaboration dedicated to observing and studying cosmic rays (CR) and cosmic-ray ensembles (CRE): groups of at least two CR with a common primary interaction vertex or the same parent particle. The CREDO program embraces testing known CR and CRE scenarios, and preparing to observe unexpected physics, it is also suitable for multi-messenger and multi-mission applications. Perfectly matched to CREDO capabilities, CRE could be formed both within classical models (e.g., as products of photon–photon interactions), and exotic scenarios (e.g., as results of decay of Super-Heavy Dark Matter particles). Their fronts might be significantly extended in space and time, and they might include cosmic rays of energies spanning the whole cosmic-ray energy spectrum, with a footprint composed of at least two extensive air showers with correlated arrival directions and arrival times. As the CRE are predominantly expected to be spread over large areas and, due to the expected wide energy range of the contributing particles, such a CRE detection might only be feasible when using all available cosmic-ray infrastructure collectively, i.e., as a globally extended network of detectors. Thus, with this review article, the CREDO Collaboration invites the astroparticle physics community to actively join or to contribute to the research dedicated to CRE and, in particular, to pool together cosmic-ray data to support specific CRE detection strategies.
Context. Electron energy spectra exhibiting a high-energy tail are commonly observed during solar flares. Aims. We investigate the influence of the high-energy tail and thermal or nonthermal plasma bulk on the ionization equilibrium of Si and Si flare line spectra. Methods. We construct a realistically composed distribution that reflects the fits to RHESSI observations. We describe the high-energy tail by a power-law distribution and the bulk of the electron distribution by either the Maxwellian or n-distribution. The shape of this composed distribution is described by three parameters: the ratio of the plasma bulk density to the density of the high-energy tail, the power-law index of the high-energy tail, and the parameter n, which describes the bulk of the distribution. Results. Both the plasma bulk and the high-energy tail change the ionization equilibrium. The relative ion abundances are sensitive to the shape of the plasma bulk, but are much less sensitive to the high-energy tail. The high-energy tail increases the ratio of temperaturesensitive lines Si XIV λ5.22/Si XIII λ5.68. Because this ratio can be fitted with a thermal distribution with higher temperature, the highenergy tail influences the temperature diagnostics from flare lines. The high-energy tail has only a small effect on the ratio of the satellite-to-allowed Si XIId/Si XIII lines, which are dominantly sensitive on the shape of the plasma bulk. This enables us to perform an accurate diagnostic of the parameter n describing the plasma bulk. Conclusions. The realistically composed distribution is able to explain the observed features of the RESIK X-ray flare line spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.