DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
This study explores an operational-level container routing problem in the road-rail multimodal service network. In response to the demand for an environmentally friendly transportation, we extend the problem into a green version by using both emission charging method and bi-objective optimization to optimize the CO2 emissions in the routing. Two uncertain factors, including capacity uncertainty of rail services and travel time uncertainty of road services, are formulated in order to improve the reliability of the routes. By using the triangular fuzzy numbers and time-dependent travel time to separately model the capacity uncertainty and travel time uncertainty, we establish a fuzzy chance-constrained mixed integer nonlinear programming model. A linearization-based exact solution strategy is designed, so that the problem can be effectively solved by any exact solution algorithm on any mathematical programming software. An empirical case is presented to demonstrate the feasibility of the proposed methods. In the case discussion, sensitivity analysis and bi-objective optimization analysis are used to find that the bi-objective optimization method is more effective than the emission charging method in lowering the CO2 emissions for the given case. Then, we combine sensitivity analysis and fuzzy simulation to identify the best confidence value in the fuzzy chance constraint. All the discussion will help decision makers to better organize the green multimodal transportation.
The increasing volumes of road transportation contribute to congestion on road, which leads to delays and other negative impacts on the reliability of transportation. Moreover, transportation is one of the main contributors to the growth of carbon dioxide equivalent emissions, where the impact of road transportation is significant. Therefore, governmental organizations and private commercial companies are looking for greener transportation solutions to eliminate the negative externalities of road transportation. In this paper, we present a novel solution framework to support the operational-level decisions for intermodal transportation networks using a combination of an optimization model and simulation. The simulation model includes stochastic elements in form of uncertain travel times, whereas the optimization model represents a deterministic and linear multi-commodity service network design formulation. The intermodal transportation plan can be optimized according to different objectives, including costs, time and CO 2 e emissions. The proposed approach is successfully implemented to real-life scenarios where differences in transportation plans for alternative objectives are presented. DOI 10.1007/s10696-016-9267-1 show that the approach is capable of delivering reliable solutions and identifying possible disruptions and alternatives for adapting the unreliable transportation plans.
Efficient planning of freight transportation requires a comprehensive look at wide range of factors in the operation and management of any transportation mode to achieve safe, fast, and environmentally suitable movement of goods. In this regard, a combination of transportation modes offers flexible and environmentally friendly alternatives to transport high volumes of goods over long distances. In order to reflect the advantages of each transportation mode, it is the challenge to develop models and algorithms in Transport Management System software packages. This paper discusses the principles of green logistics required in designing such models and algorithms which truly represent multiple modes and their characteristics. Thus, this research provides a unique practical contribution to green logistics literature by advancing our understanding of the multi-objective planning in intermodal freight transportation. Analysis based on a case study from hinterland intermodal transportation in Europe is therefore intended to make contributions to the literature about the potential benefits from combining economic and environmental criteria in transportation planning. An insight derived from the experiments conducted shows that there is no need to greatly compromise on transportation costs in order to achieve a significant reduction in carbon-related emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.