We described herein a simple approach for N‐formylation with CO2 and hydrosilane reducing agents. Fluoride and hydroxide salts efficiently catalyzed the reaction, principally through activation of the hydrosilanes, which led to hydrosilane reactivities comparable to those of NaBH4/LiAlH4. Consequently, the N‐formylation of amines with CO2 could be achieved at room temperature and atmospheric pressure. The mechanism of these anionic catalysts contrasts that of the currently reported systems, for which activation of CO2 is the key mechanistic step. Using tetrabutylammonium fluoride as a simple ammonium salt catalyst, the N‐formylated products of both aliphatic and aromatic amines could be obtained in excellent yields with high selectivities.
The cycloaddition of CO 2 into epoxides catalyzed by imidazolium and related salts continues to attract attention due to the industrial importance of the cyclic carbonate products. The mechanism of the imidazolium-catalyzed transformation has been proposed to require the participation of the acidic C2 proton. However, other simple salts without acidic protons, such as N,N,N,N-tetrabutylammonium chloride, are also efficient catalysts for the reaction. Hence, we decided to investigate the role of the ring protons of imidazolium salts in this reaction. To this end, we systematically studied the catalytic activity of a series of methylsubstituted imidazolium cations, in the presence of various halide anions, both by experiment and in silico. Our results demonstrate that, while stabilization of intermediates by C2, C4, or C5 protons in imidazolium salts takes place, it is the nucleophilicity of the anion that governs the overall activity, which is intimately related to the strength of the interactions between the cation and anion. Consequently, the reactivity of the halide anion strongly depends on the nature of the cation and cosolvents. This study completes the (known) mechanism and should facilitate the development of highly efficient catalysts.
N-formylation of amines with CO 2 and hydrosilane reducing agents proceeds via fast and complex chemical equilibria, which hinder easy analysis of the reaction pathways. In situ reaction monitoring and kinetic studies reveal that three proposed pathways, via direct-and amineassisted formoxysilane formation (pathways 1 and 2, respectively) and via a silylcarbamate intermediate (pathway 3), are possible depending on the reaction conditions and the substrates. While pathway 1 is favored for non-nucleophilic amines in the absence of a catalyst, a base catalyst results in noninnocent behavior of the amine in the CO 2 reduction step toward the formoxysilane intermediate. The reaction pathway is altered by strongly nucleophilic amines, which form stable adducts with CO 2 . Silylcarbamate intermediates form, which can be directly reduced to the N-formylated products by excess hydrosilane. Nevertheless, without excess hydrosilane, the silylcarbamate is an additional intermediate en route to formoxysilanes along pathway 2. Exchange NMR spectroscopy (EXSY) revealed extensive substituent exchange around the hydrosilane silicon center, which confirms its activation during the reaction and supports the proposed reaction mechanisms. Numerous side reactions were also identified, which help to establish the reaction equilibria in the N-formylation reactions.
The synthesis of cyclic carbonates from epoxides and CO2 is a well-established reaction, whereas the synthesis of cyclic carbonates from diols and CO2 is considerably more challenging, and few efficient catalysts are available. Here, we describe heterocyclic carbene catalysts, including one derived from a cheap and efficient thiazolium salt, for this latter reaction. The reaction proceeds at atmospheric pressure in the presence of an alkyl halide and Cs2CO3. Reaction mechanisms for the transformations involved are also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.