Abstract. This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are e.g. required for assessing water resources, flood risk and habitat alteration of aquatic ecosystems. An improved version of the Water-GAP Global Hydrology Model (WGHM) was tuned against measured discharge using either the 724-station dataset (V1) against which former model versions were tuned or an extended dataset (V2) of 1235 stations. WGHM is tuned by adjusting one model parameter (γ ) that affects runoff generation from land areas in order to fit simulated and observed long-term average discharge at tuning stations. In basins where γ does not suffice to tune the model, two correction factors are applied successively: the areal correction factor corrects local runoff in a basin and the station correction factor adjusts discharge directly the gauge. Using station correction is unfavorable, as it makes discharge discontinuous at the gauge and inconsistent with runoff in the upstream basin. The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5% and the area where the model can be tuned by only adjusting γ increases by 8%. However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and in regions where the refined dataset provides a significant subdivision of formerly extended tuning basins (average V2 basin size less than half the V1 basin size). If the additional discharge information were not used for tuning, simulated long-term average discharge would differ from the observed one by a Correspondence to: M. Hunger (m.hunger@em.uni-frankfurt.de) factor of, on average, 1.8 in the formerly untuned basins and 1.3 in the subdivided basins. The benefits tend to be higher in semi-arid and snow-dominated regions where the model is less reliable than in humid areas and refined tuning compensates for uncertainties with regard to climate input data and for specific processes of the water cycle that cannot be represented yet by WGHM. Regarding other flow characteristics like low flow, inter-annual variability and seasonality, the deviation between simulated and observed values also decreases significantly, which, however, is mainly due to the better representation of average discharge but not of variability. (3) The choice of the optimal sub-basin size for tuning depends on the modeling purpose. While basins over 60 000 km 2 are performing best, improvements in V2 model performance are strongest in small basins between 9000 and 20 000 km 2 , which is primarily related to a low level of V1 performance. Increasing the density of tuning stations provides a better spatial representation of discharge...
This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are e.g. required for assessing water resources, flood risk and habitat alteration of aquatic ecosystems. An improved version of the Water-GAP Global Hydrology Model (WGHM) was tuned against measured discharge using either the 724-station dataset (V1) against which former model versions were tuned or an extended dataset (V2) of 1235 stations. WGHM is tuned by adjusting one model parameter (γ ) that affects runoff generation from land areas in order to fit simulated and observed long-term average discharge at tuning stations. In basins where γ does not suffice to tune the model, two correction factors are applied successively: the areal correction factor corrects local runoff in a basin and the station correction factor adjusts discharge directly the gauge. Using station correction is unfavorable, as it makes discharge discontinuous at the gauge and inconsistent with runoff in the upstream basin. The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5% and the area where the model can be tuned by only adjusting γ increases by 8%. However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and in regions where the refined dataset provides a significant subdivision of formerly extended tuning basins (average V2 basin size less than half the V1 basin size). If the additional discharge information were not used for tuning, simulated long-term average discharge would differ from the observed one by a Correspondence to: M. Hunger (m.hunger@em.uni-frankfurt.de) factor of, on average, 1.8 in the formerly untuned basins and 1.3 in the subdivided basins. The benefits tend to be higher in semi-arid and snow-dominated regions where the model is less reliable than in humid areas and refined tuning compensates for uncertainties with regard to climate input data and for specific processes of the water cycle that cannot be represented yet by WGHM. Regarding other flow characteristics like low flow, inter-annual variability and seasonality, the deviation between simulated and observed values also decreases significantly, which, however, is mainly due to the better representation of average discharge but not of variability.(3) The choice of the optimal sub-basin size for tuning depends on the modeling purpose. While basins over 60 000 km 2 are performing best, improvements in V2 model performance are strongest in small basins between 9000 and 20 000 km 2 , which is primarily related to a low level of V1 performance. Increasing the density of tuning stations provides a better spatial representation of discharge, but it als...
Flow velocity in rivers has a major impact on residence time of water and thus on high and low water as well as on water quality. For global scale hydrological modeling only very limited information is available for simulating flow velocity. Based on the Manning-Strickler equation, a simple algorithm to model temporally and spatially variable flow velocity was developed with the objective of improving flow routing in the global hydrological model of Water-GAP. An extensive data set of flow velocity measurements in US rivers was used to test and to validate the algorithm before integrating it into WaterGAP. In this test, flow velocity was calculated based on measured discharge and compared to measured velocity. Results show that flow velocity can be modeled satisfactorily at selected river cross sections. It turned out that it is quite sensitive to river roughness, and the results can be optimized by tuning this parameter. After the validation of the approach, the tested flow velocity algorithm has been implemented into the WaterGAP model. A final validation of its effects on the model results is currently performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.