We present a new symplectic algorithm that has the desirable properties of the sophisticated but highly efficient numerical algorithms known as mixed variable symplectic (MVS) methods and that, in addition, can handle close encounters between objects. This technique is based on a variant of the standard MVS methods, but it handles close encounters by employing a multiple time step technique. When the bodies are well separated, the algorithm has the speed of MVS methods, and whenever two bodies su †er a mutual encounter, the time step for the relevant bodies is recursively subdivided to whatever level is required. We demonstrate the power of this method using several tests of the technique. We believe that this algorithm will be a valuable tool for the study of planetesimal dynamics and planet formation.
Runaway growth ends when the largest protoplanets dominate the dynamics of the planetesimal disk; the subsequent self-limiting accretion mode is referred to as "oligarchic growth." Here, we begin by expanding on the existing analytic model of the oligarchic growth regime. From this, we derive global estimates of the planet formation rate throughout a protoplanetary disk. We find that a relatively high-mass protoplanetary disk (∼ 10× minimum-mass) is required to produce giant planet core-sized bodies (∼ 10 M ⊕ ) within the lifetime of the nebular gas ( ∼ < 10 million years). However, an implausibly massive disk is needed to produce even an Earth mass at the orbit of Uranus by 10 Myrs. Subsequent accretion without the dissipational effect of gas is even slower and less efficient. In the limit of non-interacting planetesimals, a reasonable-mass disk is unable to produce bodies the size of the Solar System's two outer giant planets at their current locations on any timescale; if collisional damping of planetesimal random velocities is sufficiently effective, though, it may be possible for a Uranus/Neptune to form in situ in less than the age of the Solar System. We perform numerical simulations of oligarchic growth with gas, and find that protoplanet growth rates agree reasonably well with the analytic model as long as protoplanet masses are well below their estimated final masses. However, accretion stalls earlier than predicted, so that the largest final protoplanet masses are smaller than those given by the model. Thus the oligarchic growth model, in the form developed here, appears to provide an upper limit for the efficiency of giant planet formation.-2 -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.