A hypothesis about the average phase-space distribution of resonance eigenfunctions in chaotic systems with escape through an opening is proposed. Eigenfunctions with decay rate γ are described by a classical measure that (i) is conditionally invariant with classical decay rate γ and (ii) is uniformly distributed on sets with the same temporal distance to the quantum resolved chaotic saddle. This explains the localization of fast-decaying resonance eigenfunctions classically. It is found to occur in the phase-space region having the largest distance to the chaotic saddle. We discuss the dependence on the decay rate γ and the semiclassical limit. The hypothesis is numerically demonstrated for the standard map.
In open chaotic systems the number of long-lived resonance states obeys a fractal Weyl law, which depends on the fractal dimension of the chaotic saddle. We study the generic case of a mixed phase space with regular and chaotic dynamics. We find a hierarchy of fractal Weyl laws, one for each region of the hierarchical decomposition of the chaotic phase-space component. This is based on our observation of hierarchical resonance states localizing on these regions. Numerically this is verified for the standard map and a hierarchical model system.
Chaotic eigenstates of quantum systems are known to localize on either side of a classical partial transport barrier if the flux connecting the two sides is quantum mechanically not resolved due to Heisenberg's uncertainty. Surprisingly, in open systems with escape chaotic resonance states can localize even if the flux is quantum mechanically resolved. We explain this using the concept of conditionally invariant measures from classical dynamical systems by introducing a new quantum mechanically relevant class of such fractal measures. We numerically find quantum-to-classical correspondence for localization transitions depending on the openness of the system and on the decay rate of resonance states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.