Although many computer programs can perform population genetics calculations, they are typically limited in the analyses and data input formats they offer; few applications can process the large data sets produced by whole-genome resequencing projects. Furthermore, there is no coherent framework for the easy integration of new statistics into existing pipelines, hindering the development and application of new population genetics and genomics approaches. Here, we present PopGenome, a population genomics package for the R software environment (a de facto standard for statistical analyses). PopGenome can efficiently process genome-scale data as well as large sets of individual loci. It reads DNA alignments and single-nucleotide polymorphism (SNP) data sets in most common formats, including those used by the HapMap, 1000 human genomes, and 1001 Arabidopsis genomes projects. PopGenome also reads associated annotation files in GFF format, enabling users to easily define regions or classify SNPs based on their annotation; all analyses can also be applied to sliding windows. PopGenome offers a wide range of diverse population genetics analyses, including neutrality tests as well as statistics for population differentiation, linkage disequilibrium, and recombination. PopGenome is linked to Hudson’s MS and Ewing’s MSMS programs to assess statistical significance based on coalescent simulations. PopGenome’s integration in R facilitates effortless and reproducible downstream analyses as well as the production of publication-quality graphics. Developers can easily incorporate new analyses methods into the PopGenome framework. PopGenome and R are freely available from CRAN (http://cran.r-project.org/) for all major operating systems under the GNU General Public License.
It is often supposed that, except for tandem duplicates, genes are randomly distributed throughout the human genome. However, recent analyses suggest that when all the genes expressed in a given tissue (notably placenta and skeletal muscle) are examined, these genes do not map to random locations but instead resolve to clusters. We have asked three questions: (i) is this clustering true for most tissues, or are these the exceptions; (ii) is any clustering simply the result of the expression of tandem duplicates and (iii) how, if at all, does this relate to the observed clustering of genes with high expression rates? We provide a unified model of gene clustering that explains the previous observations. We examined Serial Analysis of Gene Expression (SAGE) data for 14 tissues and found significant clustering, in each tissue, that persists even after the removal of tandem duplicates. We confirmed clustering by analysis of independent expressed-sequence tag (EST) data. We then tested the possibility that the human genome is organized into subregions, each specializing in genes needed in a given tissue. By comparing genes expressed in different tissues, we show that this is not the case: those genes that seem to be tissue-specific in their expression do not, as a rule, cluster. We report that genes that are expressed in most tissues (housekeeping genes) show strong clustering. In addition, we show that the apparent clustering of genes with high expression rates is a consequence of the clustering of housekeeping genes.
Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its ‘dataset system’ contains not only the data to be visualized on the tree, but also ‘modifiers’ that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new ‘Demo’ trees to demonstrate the basic functionalities of Evolview, and five new ‘Showcase’ trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.