Methodologies for the environmental analysis of total antimony and aqueous chemical speciation are critically reviewed, including preparation techniques for aqueous and solid matrices and the determination of solid state partitioning and recommendations are given for future research directions. Concentrations of total antimony commonly present in aqueous and solid environmental samples are readily determined using present day analytical techniques. This has resulted primarily from technological advances in microwave digestion for solid matrices and the development of plasma based analyte detection systems. ICP-AES and ICP-MS techniques are both utilised for the environmental analysis of total antimony concentrations. However, ICP-MS is increasingly favoured as a result of reduced spectral interferences and the potential for analyte detection in the pg mL(-1) range. Determination of aqueous antimony speciation presents a number of complex analytical challenges and highly selective separation and identification techniques are required prior to detection. The majority of published techniques including common applications of hydride generation are insufficiently selective for the determination of intrinsic chemical speciation and often only oxidation state data are obtained. The recent in-line applications of HPLC-ICP-MS offer the potential for highly selective separations of aqueous antimony species and determination of detailed chemical speciation data. However, considerable development work is required to optimise chromatographic separations and identify uncharacterised species resident in environmental systems. Analytical techniques to aid the determination of antimony's associations with solid environmental matrices include the application of chemical extraction procedures and leaching experiments. To date, this area of analytical research has received little attention and further studies are required to elucidate this aspect of antimony's environmental chemistry.
Novel HPLC-ICP-MS methodologies are developed using strong anion exchange (Phenomenex SAX-SB) and weak anion exchange (Alltec HAAX) stationary phases in conjunction with a range of aqueous mobile phases to enable simultaneous separations of inorganic Sb(III), Sb(V) and organic trimethylantimony dichloride (TMSb) species in synthetic solutions. Optimum isocratic separations of inorganic Sb(V) and Sb(III) species are achieved using mobile phases comprised of ammonium tartrate under controlled pH conditions, and rapid pH gradient elution profiles are developed to facilitate separations of the Sb(V), Sb(III) and TMSb species in a single chromatographic run. Optimum peak resolution is achieved when using the 100 x 4.6 mm HAAX column at 20 degrees C and 100 mM ammonium tartrate mobile phases with a gradient from pH 3.0 to pH 1.2, although a system peak co-elutes with TMSb under these conditions and precludes quantitative analyses. Interestingly, the elution order of Sb(V), Sb(III) and TMSb species reverses when the temperature of the HAAX stationary phase is increased to 60 degrees C, and concurrent use of a less acidic pH gradient elution profile from pH 2.3 to pH 1.5 is shown to enable successful species separations whilst preventing occurrence of the co-eluting system peak. Limits of detection are achieved in the sub ng mL(-1) range using these novel HPLC-ICP-MS methodologies and provide scope for future environmental analysis applications.
Maturation of inductively coupled plasma-mass spectrometry (ICP-MS) in terms of size, reliability, and cost has had a significant impact on its consideration as a viable detector for gas chromatography. Its generally excellent sensitivity for those elements it can measure has been a contributing factor. A method for sulfur speciation in various hydrocarbon products is investigated, as well as sulfur and metal hydride contaminants in high purity hydrocarbon feed stocks. Detection limits for sulfur species in hydrocarbon liquids and gases are approximately 5 and 10 ppb, respectively, as sulfur. Lower detection limits on the order of 100 parts per trillion are achieved for arsine. The use of collision cell technology (CCT) is exploited to remove interferences. CCT has been described elsewhere (1) using helium or helium-hydrogen mixtures for suppression of (16)O(16)O(+) interference with (32)S. In this work, a novel approach is investigated which uses oxygen to remove this interference by shifting it in a comprehensive fashion. The advantage of operating the system at full power with a tandem gas and liquid interface is also discussed.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.