Calorimetric, X-ray diffraction, and 31P nuclear magnetic resonance (NMR) studies of aqueous dispersions of 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) gel phases at low temperatures (-60 to 22 degrees C) show thermal, structural, and dynamic differences when compared to aqueous dispersions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) gel phases at corresponding temperatures. Differential scanning calorimetry of DHPC dispersions demonstrates a reversible, low-enthalpy "subtransition" at 4 degrees C in contrast to the conditionally reversible, high-enthalpy subtransition observed at 17 degrees C for annealed DPPC bilayers. X-ray diffraction studies indicate that DHPC dispersions form a lamellar gel phase with dav congruent to 46 A both above and below the "subtransition". It is suggested that the reduced dav observed for DHPC (46 A as compared to 64 A in DPPC) is due to an interdigitated lamellar gel phase which exists at all temperatures below the pretransition at 35 degrees C. 31P NMR spectra of DHPC gel-phase bilayers show an axially symmetric chemical shift anisotropy powder pattern which remains sharp down to -20 degrees C, suggesting the presence of fast axial diffusion. In contrast, 31P spectra of DPPC bilayers indicate this type of motion is frozen out at approximately 0 degrees C.
Differential scanning calorimetry and X-ray diffraction of anhydrous and hydrated N-palmitoylgalactosylsphingosine (NPGS) show evidence of complex polymorphic behavior and interconversions between stable and metastable structural forms. Anhydrous NPGS exhibits three lamellar crystal forms (A, B, and B') at temperatures below 143 degrees C and a liquid-crystal form between 143 and 180 degrees C before melting to an isotropic liquid at 180 degrees C. The crystal B leads to liquid-crystal transition is accompanied by an enthalpy change, delta H, of 11.2 kcal/mol of NPGS, while a relatively small enthalpy change (delta H = 0.8 kcal/mol) marks the liquid-crystal leads to liquid transition. The A and B' crystal forms do not hydrate readily at room temperature. When heated, crystal form A in the presence of water undergoes an exothermic transition at 52 degrees C to produce a thermodynamically stable hydrated crystal E form. X-ray diffraction shows that this stable bilayer crystal form has a highly ordered hydrocarbon chain packing arrangement; melting to the bilayer liquid-crystal form occurs at 82 degrees C with a large enthalpy change, delta H = 17.5 kcal/mol of NPGS. A complex liquid-crystal leads to crystal transition is observed on cooling; the cooling rate independent exotherm involves the transition of the hydrated liquid crystal to an intermediate metastable crystal form identical with anhydrous crystal form A. The subsequent cooling rate dependent step involves the conversion of the metastable crystal form A to the stable crystal form E. We suggest that hydrated crystal form E is stabilized by both a highly ordered chain packing mode and a lateral intermolecular hydrogen bonding network involving the sphingosine backbone, the galactosyl group, and interbilayer water molecules. Although disruption of both the specific hydrogen chain packing and H-bonding networks occurs at the high enthalpy transition to the bilayer liquid-crystal L alpha form, these two types of interactions are not reestablished simultaneously on cooling. First, recrystallization of the hydrocarbon chain accompanies removal of water from the lipid interface, leading to "dehydrated" metastable crystal form A. This is followed by a time-dependent, temperature-dependent hydration process which allows a rearrangement of the hydrogen-bonding matrix. Alterations in the NPGS-NPGS and NPGS-water interactions accompany further changes in the hydrocarbon chain packing and lead to the formation of the stable E form.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the interaction of hydrated N-palmitoylgalactosylsphingosine (NPGS) and dipalmitoylphosphatidylcholine (DPPC). For mixtures containing less than 23 mol% NPGS, complete miscibility of NPGS into hydrated DPPC bilayers is observed in both the bilayer gel and liquid-crystal phases. X-ray diffraction data demonstrate insignificant differences in the DPPC-bilayer gel-phase parameters on incorporation of up to 23 mol% NPGS. At greater than 23 mol% NPGS, additional high-temperature transitions occur, indicating phase separation of cerebroside. For these cerebroside concentrations, at 20 degrees C, x-ray diffraction shows two lamellar phases, hydrated DPPC-NPGS gel bilayers (d = 64 A) containing 23 mol% NPGS, and NPGS "crystal" bilayers (d = 55 A). On heating to temperatures greater than 45 degrees C, the mixed DPPC-NPGS bilayer phase undergoes chain melting, and on further increasing the temperature progressively more NPGS is incorporated into the liquid-crystal DPPC-NPGS bilayer phase. At temperatures greater than 82 degrees C (the transition temperature of hydrated NPGS), complete lipid miscibility is observed at all DPPC/NPGS molar ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.