We introduce a previously unreported laser cavity configuration, using a diffractive optical element (DOE) in place of the output coupler. Such a configuration allows the DOE to work both in reflection, as a mode shaping element, and in transmission as a beam shaper. Employing dual wavelength DOE optimization techniques and phase delays greater than 2pi, allows the two functions to be designed independently. Thus, an arbitrary output beam profile can be combined with a mode shape which maximizes energy extraction from the gain medium. Devices are designed and their performance modeled for a 1m cavity with 5mm diameter mirrors and a wavelength of 632.8nm. An element with 32 quantization levels and a maximum phase delay of 8pi in transmission produces high quality results.
Three-dimensional subsurface imaging through the back side of a silicon flip chip is reported with a diffraction-limited lateral resolution of 166nm and an axial performance capable of resolving features only 100nm deep. This performance was achieved by implementing sample-scanned two-photon optical beam induced current microscopy using a silicon solid immersion lens and a peak detection algorithm. The excitation source was a 1530nm erbium:fiber laser, and the lateral optical resolution obtained corresponds to 11% of the free-space wavelength.
A bundle of optical fibers was constructed to deliver Q-switched frequency-doubled Nd:YAG laser pulses for the purpose of particle image velocimetry. Data loss that is due to fiber speckle was reduced by ensuring that each fiber was different in length by more than the coherence length of the laser being delivered. Hence, their speckle patterns will overlap but not interfere, producing more even illumination that is shown to reduce data loss. A custom-made diffractive optical element and careful endface preparation help to reduce damage to the fibers by the required high peak powers. With this method, pulse energies in excess of 25 mJ were delivered for a series of experimental trials within the cylinder head of an optically accessed internal combustion engine. Results from these trials are presented along with a comparison of measurements generated by conventionally delivered beams.
We present a high-efficiency reflective lamellar grating geometry, based on a two-dimensional photonic bandgap structure, that we predict will provide significantly improved resistance to laser-induced damage. Two independent numerical methods are used to compare the performance of this geometry with that of a conventional multilayer dielectric stack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.