One of the security conditions of Vernam's cipher is that the encryption key must be greater than or equal to the open text we want to encrypt. At the same time, this key must not be repeated in another encryption. Then, each change of the encryption key adds security to the encryption process. If a cipher is changed several times while encrypting a single open text, it becomes very difficult to decrypt the message. Therefore, our goal is to design a mechanism to generate an encryption key using a Tree Parity Machine and a Genetic Algorithm that will be able to create the same encryption keys on both sides that enter the encryption process. These keys should change during encryption. One of the first tasks is to create an input population for the genetic algorithm from the synchronized Tree parity machine. Therefore, this article presents one of the possible ways to create an input population without using too many synchronizing TPMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.