Dentine dysplasia type II is an autosomal dominant disorder in which mineralization of the dentine of the primary teeth is abnormal. On the basis of the phenotypic overlap between, and shared chromosomal location with, dentinogenesis imperfecta type II, a second disorder of dentine mineralization, it has been proposed that the two conditions are allelic. As recent studies have shown that dentinogenesis imperfecta type II results from mutation of the bicistronic dentine sialophosphoprotein gene (DSPP ), we have tested this hypothesis by sequencing DSPP in a family with a history of dentine dysplasia type II. Our results have shown that a missense change, which causes the substitution of a tyrosine for an aspartic acid in the hydrophobic signal peptide domain of the protein, underlies the phenotype in this family. Biochemical analysis has further demonstrated that this mutation causes a failure of translocation of the encoded proteins into the endoplasmic reticulum, and is therefore likely to lead to a loss of function of both dentine sialoprotein and dentine phosphoprotein.
The presence of resorption in primary teeth did not affect the accuracy of electrical measurement of root canal length in vitro. The application of this method in primary teeth should be evaluated further.
Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs(∗)64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96(∗)) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.