Fluid volumes in fracturing treatments have increased substantially, while water supply has become more of a public concern. Rather than paying to treat and dispose of produced and flowback water, operators would like to reuse it in subsequent stimulation treatments. Produced water with high total dissolved solids (TDS) and high divalent cation content poses extreme challenges for emulsion friction reducers because cations hinder the inversion of friction reducers and cause loss of efficiency of friction reduction. Treating produced water to the quality suitable for conventional fracturing fluids is time-consuming and often cost-prohibitive.A salt-tolerant friction reducer was developed to address the challenges of high-TDS produced water. In a produced water sample with high TDS and high total hardness, the new polymer hydrates within 10 seconds and gives a friction reduction profile similar to that of current inverse-emulsion friction reducers in fresh water. The fluid is compatible with other common stimulation additives such as scale inhibitors, biocides, clay stabilizers, surfactants, and breakers.The paper discusses field test results and production response from slickwater fracturing operation in Delaware basin with produced water containing more than 250,000 ppm TDS and 60,000 ppm total hardness. Head-to-head comparison with conventional crosslinked fluids and friction reducers under field conditions showed significant oil and gas production improvement resulting from increased fracture complexity by pumping low viscosity fluids at higher pumping rate in extremely high-TDS produced water. It provides the oilfield industry a cost-effective solution of reducing produced water disposal and fresh water demands, thereby ultimately improving environmental and economic impacts of well operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.