We propose a mixed structure to form cascades for AdaBoost classifiers, where parallel strong classifiers are trained for each layer. The structure allows for rapid training and guarantees high hit rates without changing the original threshold. We implemented and tested the approach for two datasets from UCI [1], and compared results of binary classifiers using three different structures: standard AdaBoost, a cascade classifier with threshold adjustments, and the proposed structure.
Abstract. This paper presents some performance results obtained from a new Beowulf cluster, the Helix, built at Massey University, Auckland funded by the Allan Wilson Center for Evolutionary Ecology. Issues concerning network latency and the effect of the switching fabric and network topology on performance are discussed. In order to assess how the system performed using the message passing interface (MPI), two test suites (mpptest and jumpshot) were used to provide a comprehensive network performance analysis. The performance of an older fast-ethernet/single processor based cluster is compared to the new Gigabit/SMP cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.