A potent synthetic cannabinoid receptor agonist, JHW-018, was recently detected as one of the most prominent active agents in abusively used incenses such as Spice and other herbal blends. The high pharmacological and addictive potency of JWH-018 highlights the importance of elucidating the metabolism of JWH-018, without which a meaningful insight into its pharmacokinetics and its toxicity would not be possible. In the present study, the cytochrome P450 phase I metabolites of JWH-018 were investigated, after in vitro incubation of the drug with human liver microsomes, followed by liquid chromatography-tandem mass spectrometry analysis. This revealed monohydroxylation of the naphthalene ring system, the indole moiety, and the alkyl side chain. In addition, observations were made of dihydroxylation of the naphthalene ring system, and the indole moiety, or as result of a combination of monohydroxylations of both the naphthalene ring system and the indole moiety or the alkyl side chain, or a combination of monohydroxylations of both the indole ring system and the alkyl side chain. There is also evidence of trihydroxylation at different locations of the hydroxyl groups in the molecule. Furthermore, dehydration of the alkyl side chain, in combination with both monohydroxylation and dihydroxylation as well as arene oxidation of the naphthalene ring system, combined with both monohydroxylation and dihydroxylation at different sites of oxidation were found. N-dealkylation also in combination with both monohydroxylation and dihydrodiol formation of the N-dealkylated metabolite was detected. Finally, a metabolite was found carboxylated at the alkyl side chain.
Defensins are a family of secreted antimicrobial peptides proposed to directly interfere with bacterial membranes. Here we show a functional analysis of the novel beta-defensin DEFB123. A peptide comprising the beta-defensin core region was synthesized and used for our analysis. Like other beta-defensins, DEFB123 exerted antimicrobial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, which was assessed by microbroth dilution assay and radial diffusion zone assay. In addition, the peptide showed lipopolysaccharide (LPS)-binding activity in a Limulus amoebocyte lysate (LAL) assay. Moreover, DEFB123 prevented LPS-induced tumor necrosis factor (TNF)-alpha secretion in a murine monocyte cell line (RAW264.7). Accordingly, DEFB123 abolished LPS-mediated MAPK induction in these cells. Protection against LPS-mediated effects was then investigated in a murine model of acute sepsis. Our experiments show that synthetic beta-defensin DEFB123 prevents LPS-induced mortality in C57BL/6 mice in a therapeutic approach. We propose that the physiological role of beta-defensins may include interference with LPS-action on macrophages, a function formerly thought to be restricted to the family of cathelicidins, a structurally unrelated group of antimicrobial peptides.
Referred to as 'spice', several new drugs, advertised as herbal blends, have appeared on the market in the last few years, in which the synthetic cannabinoids JWH-018 and a C(8) homologue of CP 47,497 were identified as major active ingredients. Due to their reported cannabis-like effects, many European countries have banned these substances. The World Anti-Doping Agency has also explicitly prohibited synthetic cannabinoids in elite sport in-competition. Since urine specimens have been the preferred doping control samples, the elucidation of the metabolic pathways of these substances is of particular importance to implement them in sports drug testing programmes. In a recent report, an in vitro phase-I metabolism study of JWH-018 was presented yielding mainly hydroxylated and N-dealkylated metabolites. Due to these findings, a urine sample of a healthy man declaring to have smoked a 'spice' product was screened for potential phase-I and -II metabolites by high-resolution/high-accuracy mass spectrometry in the present report. The majority of the phase-I metabolites observed in earlier in vitro studies of JWH-018 were detected in this urine specimen and furthermore most of their respective monoglucuronides. As no intact JWH-018 was detectable, the monohydroxylated metabolite being the most abundant one was chosen as a target analyte for sports drug testing purposes; a detection method was subsequently developed and validated in accordance to conventional screening protocols based on enzymatic hydrolysis, liquid-liquid extraction, and liquid chromatography/electrospray tandem mass spectrometry analysis. The method was applied to approximately 7500 urine doping control samples yielding two JWH-018 findings and demonstrated its capability for a sensitive and selective identification of JWH-018 and its metabolites in human urine.
A fatal case of nicotine intoxication by oral intake of a nicotine solution, sold via the Internet, is reported. The concentrated nicotine solution (72 mg/mL) is usually diluted with polypropylene, polyethylene glycol or glycerine, respectively, in order to allow the user to generate their own solution for vaporisation in electronic cigarettes (e-juice). A 34-year-old man was found lifeless by his parents, who reported that their son had been in good health and had shown no hints of suicidal behaviour. The medicolegal autopsy revealed unspecific findings. Toxicological analysis revealed nicotine concentrations of 5.5 mg/L in femoral venous blood, 136 mg/L in heart blood, 12.0 mg/kg in brain tissue, 42.6 mg/kg in kidney tissue, 89.5 mg/kg in lung tissue and a total amount of 3,950 mg in the gastric contents. Cotinine concentrations were 0.9 mg/L in femoral venous blood, 7.6 mg/L in heart blood, 0.4 mg/kg in brain tissue, 0.9 mg/kg in kidney tissue and 0.8 mg/kg in lung tissue. No cotinine was detected in the gastric contents. The nicotine level measured in the femoral blood was in good accordance with the levels reported in other fatal cases caused by oral or patch application of nicotine. Moreover, the high level of nicotine in lung and kidney tissue, compared to that within femoral blood, strikingly emphasises the strong effect of post-mortem redistribution, underlined by the comparably low concentration of nicotine in the brain. The extremely high level of nicotine in the heart blood is more likely due to the high concentration in the gastric contents, due to oral intake, and by accumulation of the basic substance in the acidic gastric contents. This further highlights the effect of post-mortem redistribution. The mother of the deceased later admitted that her son had been suffering from psychosis and that she found a package containing five nicotine solution vials of the brand "Titanium Ice" (of 50 mL each). Three of the vials were empty. The nicotine concentration in the e-juice Titanium Ice was confirmed by HPLC analysis.
We quantified the effect of acute ethanol exposure (initial blood concentrations 0.7 g/L) on major drug metabolizing enzymes and p-glycoprotein. Sixteen healthy Caucasians participated in a randomized crossover study with repeated administration of either vodka or water. Enzyme/transporter activity was assessed by a cocktail of probe substrates, including caffeine (CYP1A2/NAT2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-glycoprotein). The ratio of AUC of dextromethorphan for ethanol/water coadministration was 1.95 (90% confidence interval (CI) 1.48-2.58). The effect was strongest in individuals with a CYP2D6 genotype predicting high activity (n = 7, ratio 2.66, 90% CI 1.65-4.27). Ethanol increased caffeine AUC 1.38-fold (90% CI 1.25-1.52) and reduced intestinal midazolam extraction 0.77-fold (90% CI 0.69-0.86). The other probe drugs were not affected by ethanol. The results suggest that acute ethanol intake typically has no clinically important effect on the enzymes/transporters tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.