The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS)-based method for stable carbon isotopes of endogenous urinary steroids is presented. The key element in sample preparation is the consecutive cleanup with high-performance liquid chromatography (HPLC) of underivatized and acetylated steroids, which allows the isolation of ten analytes (11beta-hydroxyandrosterone, 5alpha-androst-16-en-3beta-ol, pregnanediol, androsterone, etiocholanolone, testosterone, epitestosterone, 5alpha-androstane-3alpha,17beta-diol, 5beta-androstane-3alpha,17beta-diol and dehydroepiandrosterone) from a single urine specimen. These steroids are of particular importance to doping controls as they enable the sensitive and retrospective detection of steroid abuse by athletes. Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers repeatability and reproducibility. Specificity was further demonstrated by gas chromatography/mass spectrometry (GC/MS) for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring (13)C/(12)C ratios of all implemented steroids, a reference population of n = 61 subjects was measured to enable the calculation of reference limits for all relevant steroidal Delta values.
Mammalian cell viability is dependent on the supply of the essential fatty acids (EFAs) linoleic and a-linolenic acid. EFAs are converted into x3-and x6-polyunsaturated fatty acids (PUFAs), which are essential constituents of membrane phospholipids and precursors of eicosanoids, anandamide and docosanoids. Whether EFAs, PUFAs and eicosanoids are essential for cell viability has remained elusive. Here, we show that deletion of D6-fatty acid desaturase (FADS2) gene expression in the mouse abolishes the initial step in the enzymatic cascade of PUFA synthesis. The lack of PUFAs and eicosanoids does not impair the normal viability and lifespan of male and female fads2À/À mice, but causes sterility. We further provide the molecular evidence for a pivotal role of PUFA-substituted membrane phospholipids in Sertoli cell polarity and blood-testis barrier, and the gap junction network between granulosa cells of ovarian follicles. The fads2À/À mouse is an auxotrophic mutant. It is anticipated that FADS2 will become a major focus in membrane, haemostasis, inflammation and atherosclerosis research.
BackgroundRed blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold.Methods/FindingsBlood from fifteen male subjects was incubated with the NOS substrate L-arginine to directly stimulate enzyme activity. Direct inhibition of enzyme activity was induced by L-N5-(1-Iminoethyl)-ornithin (L-NIO). Indirect stimulation and inhibition of RBC-NOS were achieved by applying insulin and wortmannin, respectively, substances known to affect PI3-kinase/Akt kinase pathway. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were additionally applied as NO positive and negative controls, respectively. Immunohistochemical staining was used to determine phosphorylation and thus activation of RBC-NOS. As a marker for NO synthesis nitrite was measured in plasma and RBCs using chemiluminescence detection. S-nitrosylation of erythrocyte proteins was determined by biotin switch assay and modified proteins were identified using LC-MS. RBC deformability was determined by ektacytometry. The data reveal that activated RBC-NOS leads to increased NO production, S-nitrosylation of RBC proteins and RBC deformability, whereas RBC-NOS inhibition resulted in contrary effects.Conclusion/SignificanceThis study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely α- and β-spectrins. Our data, therefore, gain novel insights into biological functions of RBC-NOS by connecting impaired RBC deformability abilities to specific posttranslational modifications of RBC proteins. By identifying likely NO-target proteins in RBC, our results will stimulate new therapeutic approaches for patients with microvascular disorders.
Owing to the sensitive, selective, and unambiguous nature of mass spectrometric analyses, chromatographic techniques interfaced to various kinds of mass spectrometers have become the most frequently employed strategy in the fight against doping. To obtain utmost confidence in analytical assays, mass spectrometric characterization of target analytes and typical dissociation pathways have been utilized as basis for the development of reliable and robust screening as well as confirmation procedures. Methods for qualitative and/or quantitative determinations of prohibited low and high molecular weight drugs have been established in doping control laboratories preferably employing gas or liquid chromatography combined with electron, chemical, or atmospheric pressure ionization followed by analyses using quadrupole, ion trap, linear ion trap, or hyphenated techniques. The versatility of modern mass spectrometers enable specific as well as comprehensive measurements allowing sports drug testing laboratories to determine the misuse of therapeutics such as anabolic-androgenic steroids, stimulants, masking agents or so-called designer drugs in athletes' blood or urine specimens, and a selection of recent developments is summarized in this review.
In the present study, a new type of mass spectrometer combining a quadrupole mass filter, a higher collision dissociation (HCD) cell and an Orbitrap detector, was evaluated for the analysis of dried blood spots (DBS) in doping controls. DBS analysis is characterized by the necessity to detect prohibited compounds in sub-nanogram-per-milliliter levels with high identification capacity. After extraction of DBS with an organic solvent and liquid chromatographic separation (using a regular C18-RP-analytical UHPLC-column) of target analytes, mass spectrometry is performed with a high-resolution full scan in positive and negative mode by means of electrospray ionisation. Single-product ion mass spectra are acquired using the data-dependent analysis mode (employing an inclusion list) for previously selected precursors of known prohibited compounds with fixed retention time ranges. Besides, a sensitive screening in a targeted approach, non-targeted analysis for retrospective data evaluation is thus possible. The chosen experimental design enables the determination of various drugs from different classes with one generic sample preparation which is shown for 26 selected model compounds (Δ(9)-tetrahydrocannabinol (THC), tetrahydrocannabinol-9-carboxylic acid (THC-COOH), methylhexaneamine, methylphenidate, cocaine, nikethamide, 3,4-methylenedioxyamphetamine, N-methyl-3,4-methylenedioxyamphetamine, strychnine, mesocarb, salbutamol, formoterol, clenbuterol, metandienone, stanozolol, bisoprolol, propranolol, metoprolol, anastrazole, clomiphene, exemestane, dexamethasone, budesonide, selective androgen receptor modulator (SARM) S4 (andarine), SARM S1, hydrochlorothiazide). Generally, only qualitative result interpretation was focussed upon, but for target analytes with deuterium-labelled internal standards (salbutamol, clenbuterol, cocaine, dexamethasone, THC-COOH and THC) quantitative analysis was also possible. Especially the most challenging analytes, THC and its carboxy metabolite, were detected in DBS at relevant concentrations (<0.5 ng/mL) using targeted HCD experiments. The method was validated for the parameters: specificity, linearity (0-20 ng/mL), precision (<25%), recovery (mean 60%), limit of detection/quantification, ion suppression, stability and accuracy (80-120%). Six isotope-labelled analogues used as internal standards facilitate a quantitative result interpretation which is of utmost importance especially for in-competition drug sports testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.