The utilization of a specific priority rule in scheduling operations in flexible job shop systems strongly influences production goals. In a context of production control in real practice, production performance indicators are evaluated always en bloc. This paper addresses the multi-criteria evaluating five selected conflicting production objectives via scalar simulation-based optimization related to applied priority rule. It is connected to the discrete-event simulation model of a flexible job shop system with partially interchangeable workplaces, and it investigates the impact of three selected priority rules—FIFO (First In First Out), EDD (Earliest Due Date), and STR (Slack Time Remaining). In the definition of the multi-criteria objective function, two scalarization methods—Weighted Sum Method and Weighted Product Method—are employed in the optimization model. According to the observations, EDD and STR priority rules outperformed the FIFO rule regardless of the type of applied multi-criteria method for the investigated flexible job shop system. The results of the optimization experiments also indicate that the evaluation via applying multi-criteria optimization is relevant for identifying effective solutions in the design space when the specific priority rule is applied in the scheduling operations.
The article addresses an approximate solution to the multi-objective optimization problem for a black-box function of a manufacturing system. We employ the surrogate of the discrete-event simulation model of a batch production system in an analytical form. Integration of simulation, Design of Experiments methods, and Weighted Sum and Weighted Product multi-objective methods are used in an arrangement of a priori defined preferences to find a solution near the Pareto optimal solution in a criterion space. We compare the results obtained through the analytical approach to the outcomes of simulation-based optimization. The observed results indicate a possibility to apply the suitable analytical model for quickly finding the acceptable approximate solution close to the Pareto optimal front.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.