In this article a hydrodynamic and rheological analysis of a continuous airlift bioreactor with high-cell-density system is presented. A highly flocculating recombinant strain of Sacharomyces cerevisiae containing genes for lactose transport (lactose permease) and hydrolysis (beta-galactosidase) was exploited to ferment lactose from cheese whey to ethanol. The magnetic particle-tracer method was used to assess the effect of operational conditions (air-flow rate, biomass concentration) on hydrodynamic behavior of an airlift bioreactor during the fermentation process. Measurements of liquid circulation velocity showed the existence of a critical value of biomass concentration at which a dramatic deceleration of net liquid flow appeared with increasing biomass quantity. Rheological analysis revealed exponential increase of viscosity of the yeast floc suspension at the same biomass concentration of about 73 g/dm3 corresponding to 42.8% v/v of solid fraction. These facts have a particular importance for the successful processing of a high-cell-density airlift bioreactor as only a circulated flow regime will be favorable to keep the solid particles in suspension state and evenly distributed throughout the bioreactor.
In this work the sulfite oxidation (SOM), dynamic pressure-step (DPM) and gassing-out (GOM) methods were compared for volumetric mass transfer coefficient measurement in an airlift reactor with internal loop. As a liquid phase both, non-coalescent and coalescent media were used. Among the methods discussed here, the mass transfer coefficient (k L a) values obtained by the DPM appear as the most reliable as they were found to be independent of oxygen concentration in the inlet gas, which confirmed the physical correctness of this method. The difference between data measured using air and oxygen was not higher than 10%, which was comparable to the scatter of experimental data. It has been found that the sulfite oxidation method yielded k L a values only a little higher than those obtained by the DPM and the difference did not exceed 10%. Up to an inlet gas velocity (U GC ) of ∼ =0.03 m s −1 the GOM using oxygen as a gas medium gave k L a values in fact identical with those obtained by the DPM. At higher flows of the inlet gas, the GOM yielded k L a values as much as 15% lower. The enhancement in oxygen mass transfer rate determined in non-coalescent media was estimated to be up to +15%, when compared with a coalescent batch. The experimental dependence of k L a vs the overall gas hold-up was described by an empirical correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.