Background The glial-lymphatic or glymphatic pathway is a fluid clearance pathway recently identified in the rodent brain. This pathway subserves the flow of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and thence into the brain interstitium facilitated by aquaporin-4 (AQP4) water channels. The pathway then directs flows towards the venous perivascular and perineuronal spaces, ultimately clearing solutes from the neuropil into meningeal and cervical lymphatic drainage vessels. In rodents, the glymphatic pathway is primarily active during sleep, when the clearance of harmful metabolites such as amyloid β (Aβ) increases two-fold relative to the waking state. Glymphatic dysfunction has been demonstrated in animal models of traumatic brain injury (TBI), Alzheimer’s disease (AD) and micro-infarct disease, most likely in relation to perturbed expression of AQP4. The recent characterizations of the glymphatic and meningeal lymphatic systems calls for revaluation of the anatomical routes for CSF-ISF flow and the physiological role that these pathways play in CNS health. Recent developments Recent work has revealed that several features of the glymphatic and meningeal lymphatic systems are also present in humans. MRI imaging of intrathecally-administered contrast agent shows that CSF flows along pathways closely resembling the glymphatic system outlined in rodents. Furthermore, PET studies reveal that Aβ accumulates in the healthy brain after a single night of sleep deprivation, suggesting that the human glymphatic pathway might also be primarily active during sleep. Other PET studies have shown that CSF clearance of Aβ and tau tracers is reduced in patients with AD compared to healthy controls. The observed reduction in CSF clearance was associated with increasing grey matter Aβ levels in human brain, which is consistent with findings in mice showing that decreased glymphatic function leads Aβ accumulation. Altered AQP4 expression is also evident in brain tissue from AD or normal pressure hydrocephalus (NPH) patients; glymphatic MRI of NPH patients shows reduced CSF tracer entry and clearance. Where next? Future research is needed to confirm if specific factors driving glymphatic flow in rodents also apply to humans. Conducting longitudinal imaging studies to evaluate human CSF dynamics will determine if there is indeed a causal link between reduced brain solute clearance and the development of neurodegenerative diseases. Assessment of glymphatic function after stroke or TBI could identify if it correlates with neurological recovery. Gaining new insights into how behavior and genetics modify glymphatic function, and how this decompensates in disease should lead to the development of new preventive and diagnostic tools, as well as novel therapeutic targets.
Brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully towards processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid (the cerebrospinal fluid; CSF) that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of AQP4 water channels facing towards CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF
Exosomes are nanometer-sized lipid vesicles present in liquid biopsies and used as biomarkers for several diseases including cancer, Alzheimer's, and central nervous system diseases. Purification and subsequent size and surface characterization are essential to exosome-based diagnostics. Sample purification is, however, time consuming and potentially damaging, and no current method gives the size and zeta potential from a single measurement. Here, we concentrate exosomes from a dilute solution and measure their size and zeta potential in a one-step measurement with a salt gradient in a capillary channel. The salt gradient causes oppositely directed particle and fluid transport that trap particles. Within minutes, the particle concentration increases more than two orders of magnitude. A fit to the spatial distribution of a single or an ensemble of exosomes returns both their size and surface charge. Our method is applicable for other types of nanoparticles. The capillary is fabricated in a low-cost polymer device.
The central nervous system is lined by meninges, classically known as dura, arachnoid, and pia mater. We show the existence of a fourth meningeal layer that compartmentalizes the subarachnoid space in the mouse and human brain, designated the subarachnoid lymphatic-like membrane (SLYM). SLYM is morpho- and immunophenotypically similar to the mesothelial membrane lining of peripheral organs and body cavities, and it encases blood vessels and harbors immune cells. Functionally, the close apposition of SLYM with the endothelial lining of the meningeal venous sinus permits direct exchange of small solutes between cerebrospinal fluid and venous blood, thus representing the mouse equivalent of the arachnoid granulations. The functional characterization of SLYM provides fundamental insights into brain immune barriers and fluid transport.
Cerebral edema develops after anoxic brain injury. In two models of asphyxial and asystolic cardiac arrest without resuscitation, we found that edema develops shortly after anoxia secondary to terminal depolarizations and the abnormal entry of cerebrospinal fluid (CSF). Edema severity correlated with the availability of CSF with the age-dependent increase in CSF volume worsening the severity of edema. Edema was identified primarily in brain regions bordering CSF compartments in mice and humans. The degree of ex vivo tissue swelling was predicted by an osmotic model suggesting that anoxic brain tissue possesses a high intrinsic osmotic potential. This osmotic process was temperature-dependent, proposing an additional mechanism for the beneficial effect of therapeutic hypothermia. These observations show that CSF is a primary source of edema fluid in anoxic brain. This novel insight offers a mechanistic basis for the future development of alternative strategies to prevent cerebral edema formation after cardiac arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.