Three donor-linker-acceptor triphenylamine-based cyanoacrylic acid organic dyes used for dye-sensitized solar cells (DSCs) have been examined with respect to their effect on the open-circuit voltage (V(oc)). Our previous study showed a decrease in V(oc) for DSCs based on dyes with increased molecular size (increased linker conjugation). In the present study, we investigate the origin of V(oc) with respect to (i) conduction band (E(CB)) positions of TiO(2) and (ii) degree of recombination between electrons in TiO(2) and electrolyte acceptor species at the interface. These parameters were studied as a function of dye structure, dye load, and I(2) concentration. Two types of behavior were identified: the smaller polyene dyes show a surface-protecting effect preventing recombination upon increased dye loading, whereas the larger dyes enhance the recombination. How the different dye structures affect the recombination is discussed in terms of dye surface blocking and intermolecular interactions between dyes and electrolyte acceptor species.
The surface adsorption behavior of protein variants of the enzyme human carbonic anhydrase II (HCA II) to silica nanoparticles has been investigated. Various destabilized mutants were produced by sitedirected mutagenesis of amino acids located in the interior of the protein. The silica particles induced a molten-globule-like state in all of the variants. All protein variants initially adsorbed to the particles, and then underwent conformational rearrangements in a stepwise manner, as indicated by the loss of activity and the subsequent loss of tertiary structure. Activity, CD, and ANS fluorescence measurements showed that a decrease in the global stability of the protein is strongly correlated to increased rates of conformational change following particle adsorption. In contrast to unfolding processes induced by chemical denaturants or heat, in the transition to the molten-globule-like state induced by the silica particles, the active site region unfolds before the majority of the tertiary interactions are broken.
Staphylococcal protein A (SPA) is a cell surface protein expressed by Staphylococcus aureus. It consists of five repetitive domains. The five SPA-domains show individual interaction to the Fc-fragment as well as certain Fab-fragments of immunoglobulin G (IgG) from most mammalian species. Due to the high affinity and selectivity of SPA, it has a widespread use as an affinity ligand for capture and purification of antibodies. One of the problems with proteinaceous affinity ligands in large-scale purification is their sensitivity to alkaline conditions. SPA however, is considered relatively stable to alkaline treatment. Nevertheless, it is desirable to further improve the stability in order to enable an SPA-based affinity medium to withstand even longer exposure to the harsh conditions associated with cleaning-in-place (CIP) procedures. For this purpose, a protein engineering strategy, which was used earlier for stabilization and consists of replacing the asparagine residues, is employed. Since Z in its "nonengineered" form already has a significant tolerance to alkaline treatment, small changes in stability due to the mutations are difficult to assess. Hence, in order to enable detection of improvements regarding the alkaline resistance of the Z domain, we chose to use a bypass mutagenesis strategy using a mutated variant Z(F30A) as a surrogate framework. Z(F30A) has earlier been shown to possess an affinity to IgG that is similar to the wild-type but also demonstrates decreased structural stability. Since the contribution of the different asparagine residues to the deactivation rate of a ligand is dependent on the environment and also the structural flexibility of the particular region, it is important to consider all sensitive amino acids one by one. The parental Z-domain contains eight asparagine residues, each with a different impact on the alkaline stability of the domain. By exchanging asparagine 23 for a threonine, we were able to increase the stability of the Z(F30A) domain in alkaline conditions. Also, when grafting the N23T mutation to the Z scaffold, we were able to detect an increased tolerance to alkaline treatment compared to the native Z molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.