[reaction: see text] A sequential solid-phase peptide synthesis was developed using both photolabile linker and protecting groups. The chromatic sequential lability between a tert-butyl ketone-derived linker (sensitive to irradiation at 305 nm) and a nitroveratryloxycarbonyl (NVOC) group (sensitive at 360 nm) was exploited to prepare Leu-Enkephalin in a 55% overall yield. This new strategy allows the preparation of peptides in essentially neutral medium, by avoiding the use of common deprotection reagents such as trifluoroacetic acid or piperidine.
Mechanocatalytic depolymerization of lignocellulose presents a promising method for the solid-state transformation of acidified raw biomass into water-soluble products (WSPs). However, the mechanisms underlining the utilization of mechanical forces in the depolymerization are poorly understood. A kinematic model of the milling process is applied to assess the energy dose transferred to cellulose during its mechanocatalytic depolymerization under varied conditions (rotational speed, milling time, ball size, and substrate loading). The data set is compared to the apparent energy dose calculated from the kinematic model and reveals key features of the mechanocatalytic process. At low energy doses, a rapid rise in the WSP yield associated with the apparent energy dose is observed. However, at a higher energy dose obtained by extended milling duration or high milling speeds, the formation of a substrate cake layer on the mill vials appear to buffer the mechanical forces, preventing full cellulose conversion into WSPs. By contrast, for beechwood, there exists a good linear dependence between the WSP yield and the energy dose provided to the substrate over the entire range of WSP yields. As the formation of a substrate cake in depolymerization of beechwood is less severe than that for the cellulose experiments, the current results verify the hypothesis regarding the negative effect of a substrate layer formed on the mill vials upon the depolymerization process. Overall, the current findings provide valuable insight into relationships between the energy dose and the extent of cellulose depolymerization effected by the mechanocatalytic process.
The use of hypercrosslinked microporous polymers overcomes the difficulties in the recycling of soluble acid catalysts within the lignocellulosic biorefinery improving the sustainability of cellulose hydrolysis and several other transformations.
SUMMARYThe aim of the present work is to introduce a formulation for the numerical analysis of three-dimensional thermochemical non-equilibrium hypersonic ows, using the ÿnite element method and the TaylorGalerkin scheme and adopting Park's 2-temperature, 5-species (N 2 , O 2 , NO, N and O) and 17-reaction model. Examples using Euler and Navier-Stokes equations are included and compared with experimental and numerical works presented by other authors. The results are close to those analysed by other researches and a good computational performance was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.