Extracellular alpha-synuclein (αsyn) oligomers, associated to exosomes or free, play an important role in the pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that these extracellular moieties activate microglia leading to enhanced neuronal damage. Despite extensive efforts on studying neuroinflammation in PD, little is known about the impact of age on microglial activation and phagocytosis, especially of extracellular αsyn oligomers. Here, we show that microglia isolated from adult mice, in contrast to microglia from young mice, display phagocytosis deficits of free and exosome-associated αsyn oligomers combined with enhanced TNFα secretion. In addition, we describe a dysregulation of monocyte subpopulations with age in mice and humans. Accordingly, human monocytes from elderly donors also show reduced phagocytic activity of extracellular αsyn. These findings suggest that these age-related alterations may contribute to an increased susceptibility to pathogens or abnormally folded proteins with age in neurodegenerative diseases.
ObjectiveExcessive inflammation in the central nervous system (CNS) and the periphery can result in neurodegeneration and parkinsonism. Recent evidence suggests that immune responses in Parkinson disease patients are dysregulated, leading to an increased inflammatory reaction to unspecific triggers. Although α‐synuclein pathology is the hallmark of Parkinson disease, it has not been investigated whether pathologic α‐synuclein is a specific trigger for excessive inflammatory responses in Parkinson disease.MethodsWe investigated the immune response of primary human monocytes and a microglial cell line to pathologic forms of α‐synuclein by assessing cytokine release upon exposure.ResultsWe show that pathologic α‐synuclein (mutations, aggregation) results in a robust inflammatory activation of human monocytes and microglial BV2 cells. The activation is conformation‐ dependent, with increasing fibrillation and early onset mutations having the strongest effect on immune activation. We also found that activation of immune cells by extracellular α‐synuclein is potentiated by extracellular vesicles, possibly by facilitating the uptake of α‐synuclein. Blood extracellular vesicles from Parkinson disease patients induce a stronger activation of monocytes than blood extracellular vesicles from healthy controls. Most importantly, monocytes from Parkinson disease patients are dysregulated and hyperactive in response to stimulation with pathologic α‐synuclein. Furthermore, we demonstrate that α‐synuclein pathology in the CNS is sufficient to induce the monocyte dysregulation in the periphery of a mouse model.InterpretationTaken together, our data suggest that α‐synuclein pathology and dysregulation of monocytes in Parkinson disease can act together to induce excessive inflammatory responses to α‐synuclein. ANN NEUROL 2019;86:593–606
Intracellular accumulation of a-synuclein (a-syn) and formation of Lewy bodies are neuropathological characteristics of Parkinson's disease (PD) and related a-synucleinopathies. Oligomerization and spreading of a-syn from neuron to neuron have been suggested as key events contributing to the progression of PD. To directly visualize and characterize a-syn oligomerization and spreading in vivo, we generated two independent conditional transgenic mouse models based on a-syn protein complementation assays using neuron-specifically expressed split Gaussia luciferase or split Venus yellow fluorescent protein (YFP). These transgenic mice allow direct assessment of the quantity and subcellular distribution of a-syn oligomers in vivo. Using these mouse models, we demonstrate an age-dependent accumulation of a specific subtype of a-syn oligomers. We provide in vivo evidence that, although a-syn is found throughout neurons, a-syn oligomerization takes place at the presynapse. Furthermore, our mouse models provide strong evidence for a transsynaptic cell-to-cell transfer of de novo generated a-syn oligomers in vivo.
The aggregation of α-synuclein (α-syn) is inseparably connected to Parkinson's disease (PD). It is now well-established that certain forms of α-syn aggregates, oligomers and fibrils, can exert neurotoxicity in synucleinopathies. With the exception of rare familial forms, the vast majority of PD cases are idiopathic. Understanding the earliest molecular mechanisms that cause initial α-syn misfolding could help to explain why PD affects only some individuals and others not. Factors that chaperone the transition of α-syn's physiological to pathological function are of particular interest, since they offer opportunities for intervention. The relationship between α-syn and lipids represents one of those factors. Membrane interaction is crucial for normal cellular function, but lipids also induce the aggregation of α-syn, causing cell toxicity. Also, disease-causing or risk-factor mutations in genes related to lipid metabolism like PLA2G6, SCARB2 or GBA1 highlight the close connection between PD and lipids. Despite the clear link, the ambivalent interaction has not been studied sufficiently so far. In this review, we address how α-syn interacts with lipids and how they can act as key factor for orchestrating toxic conversion of α-syn. Furthermore, we will discuss a scenario in which initial α-syn aggregation is determined by shifts in lipid/α-syn ratio as well as by dyshomeostasis of membrane bound/unbound state of α-syn.
Several age-related neurodegenerative disorders are associated with protein misfolding and aggregation of toxic peptides. α-synuclein (α-syn) aggregation and the resulting cytotoxicity is a hallmark of Parkinson's disease (PD) as well as dementia with Lewy bodies. Rising evidence points to oligomeric and pre-fibrillar forms as the pathogenic species, and oligomer secretion seems to be crucial for the spreading and progression of PD pathology. Recent studies implicate that dysfunctions in endolysosomal/autophagosomal pathways increase α-syn secretion. Mutation in the retromer-complex protein VPS35, which is involved in endosome to Golgi transport, was suggested to cause familial PD. GGA proteins regulate vesicular traffic between Golgi and endosomes and might work as antagonists for retromer complex mediated transport. To investigate the role of the GGAs in the α-syn oligomerization and/or secretion process we utilized protein-fragment complementation assays (PCA). We here demonstrate that GGAs alter α-syn oligomer secretion and α-syn oligomer-mediated toxicity. Specifically, we determined that GGA3 modifies extracellular α-syn species in an exosome-independent manner. Our data suggest that GGA3 drives α-syn oligomerization in endosomal compartments and thus facilitates α-syn oligomer secretion. Preventing the early events in α-syn oligomer release may be a novel approach to halt disease spreading in PD and other synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.