Investigating microbial interactions from an ecological perspective is a particularly fruitful approach to unveil both new chemistry and bioactivity. Microbial predator-prey interactions in particular rely on natural products as signal or defense molecules. In this context, we identified a grazing-resistant strain, isolated from the bacterivorous amoeba Genome analysis of this bacterium revealed the presence of two biosynthetic gene clusters that were found adjacent to each other on a contiguous stretch of the bacterial genome. Although one cluster codes for the polyketide synthase producing the known antibiotic mupirocin, the other cluster encodes a nonribosomal peptide synthetase leading to the unreported cyclic lipopeptide jessenipeptin. We describe its complete structure elucidation, as well as its synergistic activity against methicillin-resistant , when in combination with mupirocin. Both biosynthetic gene clusters are regulated by quorum-sensing systems, with 3-oxo-decanoyl homoserine lactone (3-oxo-C10-AHL) and hexanoyl homoserine lactone (C6-AHL) being the respective signal molecules. This study highlights the regulation, richness, and complex interplay of bacterial natural products that emerge in the context of microbial competition.
The class of cyclic lipopeptide natural products consists of compounds with a diverse range of bioactivities. In this study, we elucidated the structure of the cyclic lipopeptide anikasin using X-ray crystallography, analyzed its biosynthetic gene cluster, and investigated its natural role in the interaction between the producer strain Pseudomonas fluorescens HKI0770 and protozoal predators. These results led to the conclusion that anikasin has dual functionality enabling swarming motility and acting as a niche amoebicide, which effectively inhibits the social amoeba Polysphondylium violaceum and protects the producer strain from protozoal grazing.
Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.