Schmidt, S., Wagner, B., Heiri, O., Klug, M., Bennike, O. & Melles, M. 2010: Chironomids as indicators of the Holocene climatic and environmental history of two lakes in Northeast Greenland. Boreas, 10.1111/j.1502‐3885.2010.00173.x. ISSN 0300‐9483. Two Holocene sediment sequences from arctic lakes on Store Koldewey, an island in Northeast Greenland, were investigated for fossil chironomid assemblages. A total of 18 and 21 chironomid taxa were identified in 290‐ and 252‐cm‐long sediment sequences from Duck Lake and Hjort Lake, respectively. The chironomid assemblages were very similar in the two lakes. Canonical correspondence analysis (CCA) was used to compare fossil chironomid assemblages from Store Koldewey with chironomid assemblages and environmental conditions presently found in Canadian Arctic lakes and, hence, to infer environmental changes for Northeast Greenland. The first chironomids appeared at c. 9500 cal. a BP in Hjort Lake, and 500 years later in Duck Lake. Taxa typical for cold and nutrient‐poor arctic lakes dominated the earliest assemblages. Chironomid assemblages with taxa typical of higher summer air temperatures and lakes with higher nutrient availability occur between 8000 and 5000 cal. a BP. This period probably marks the regional Holocene thermal maximum, which is relatively late compared with some palaeoenvironmental records from East Greenland. One possible reason could be the location of Store Koldewey at the very outer coast, with local climatic conditions strongly influenced by the cold East Greenland Current. From around 5000 cal. a BP, chironomid assemblages in Duck Lake and Hjort Lake again became more typical of those presently found in Northeast Greenland, indicating relatively cold and nutrient‐poor conditions. This shift coincides with an increase of ice‐rafting debris off East Greenland and an intensification of the East Greenland Current.
A 2.9 m long sedimentary record was studied from a small lake, here referred to as Duck Lake, located at 76°25′N, 18°45′W on Store Koldewey, an elongated island off the coast of Northeast Greenland. The sediments were investigated for their geophysical and biogeochemical characteristics, and for their fossil chironomid assemblages. Organic matter began to accumulate in the lake at 9.1 cal. kyr BP, which provides a minimum age for the deglaciation of the basin. Although the early to mid‐Holocene is known as a thermal maximum in East Greenland, organic matter accumulation in the lake remained low during the early Holocene, likely due to late plant immigration and lack of nutrient availability. Organic matter accumulation increased during the middle and late Holocene, when temperatures in East Greenland gradually decreased. Enhanced soil formation probably led to higher nutrient availability and increased production in the lake. Chironomids are abundant throughout the record after 9.1 cal. kyr BP and seem to react sensitively to changes in temperature and nutrient availability. It is concluded that relative temperature reconstructions based on biogeochemical data have to be regarded critically, particularly in the period shortly after deglaciation when nutrient availability was low. Chironomids may be a suitable tool for climatic reconstructions even in those high arctic environments. However, a better understanding of the ecology of chironomids under these extreme conditions is needed.
To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (C org ) and the factors influencing C org burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and C org accumulation rates in Ullsfjorden support the notion that fjords are important C org sinks. The depth of the sulfate-methanetransition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low d 13 C values. In the Hola trough, sedimentation and C org accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka 21 to erosion at present. Thus, C org burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.
A 2.73 m long sediment sequence from Loon Lake, located at 18 m a.s.l. on outer Geographical Society Ø, East Greenland, was investigated for its chronology and changes in physical and biogeochemical properties, macrofossils, and grain-size distribution. The predominance of marine fossils throughout the sequence, dated by 14 C AMS to between 8630 and 7535 cal. yr BP, shows that the Loon Lake at that time was a marine basin, which according to existing sea-level curves was about 15-35 m deep. The sequence mainly consists of fine grained homogeneous sediments, which are interrupted by a 0.72 m thick sandy horizon with erosive basis and distinct fluctuations in the grain-size distribution and in the physical and biogeochemical properties. According to the radiocarbon dates, this sandy horizon was deposited after 8500-8300 cal. yr BP and is interpreted as originating from the Storegga tsunami. The record from Loon Lake provides the first indication of Storegga tsunami deposits from East Greenland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.