Cytochromes P450 are major metabolic enzymes involved in the biotransformation of xenobiotics. The majority of xenobiotics are metabolized in the liver, in which the highest levels of cytochromes P450 are expressed. Flavonoids are natural compounds to which humans are exposed through everyday diet. In the previous study, selected flavonoid aglycones showed inhibition of CYP3A4 enzyme. Thus, the objective of this study was to determine if these flavonoids inhibit metabolic activity of CYP1A2, CYP2A6, CYP2C8, and CYP2D6 enzymes. For this purpose, the O-deethylation reaction of phenacetin was used for monitoring CYP1A2 enzyme activity, coumarin 7-hydroxylation for CYP2A6 enzyme activity, 6-α-hydroxylation of paclitaxel for CYP2C8 enzyme activity, and dextromethorphan O-demethylation for CYP2D6 enzyme activity. The generated metabolites were monitored by high-performance liquid chromatography coupled with diode array detection. Hesperetin, pinocembrin, chrysin, isorhamnetin, and morin inhibited CYP1A2 activity; apigenin, tangeretin, galangin, and isorhamnetin inhibited CYP2A6 activity; and chrysin, chrysin-dimethylether, and galangin inhibited CYP2C8. None of the analyzed flavonoids showed inhibition of CYP2D6. The flavonoids in this study were mainly reversible inhibitors of CYP1A2 and CYP2A6, while the inhibition of CYP2C8 was of mixed type (reversible and irreversible). The most prominent reversible inhibitor of CYP1A2 was chrysin, and this was confirmed by the docking study.
Acacetin, apigenin, chrysin, and pinocembrin are flavonoid aglycones found in foods such as parsley, honey, celery, and chamomile tea. Flavonoids can act as substrates and inhibitors of the CYP3A4 enzyme, a heme containing enzyme responsible for the metabolism of one third of drugs on the market. The aim of this study was to investigate the inhibitory effect of selected flavonoids on the CYP3A4 enzyme, the kinetics of inhibition, the possible covalent binding of the inhibitor to the enzyme, and whether flavonoids can act as pseudo-irreversible inhibitors. For the determination of inhibition kinetics, nifedipine oxidation was used as a marker reaction. A hemochromopyridine test was used to assess the possible covalent binding to the heme, and incubation with dialysis was used in order to assess the reversibility of the inhibition. All the tested flavonoids inhibited the CYP3A4 enzyme activity. Chrysin was the most potent inhibitor: IC50 = 2.5 ± 0.6 µM, Ki = 2.4 ± 1.0 µM, kinact = 0.07 ± 0.01 min−1, kinact/Ki = 0.03 min−1 µM−1. Chrysin caused the highest reduction of heme (94.5 ± 0.5% residual concentration). None of the tested flavonoids showed pseudo-irreversible inhibition. Although the inactivation of the CYP3A4 enzyme is caused by interaction with heme, inhibitor-heme adducts could not be trapped. These results indicate that flavonoids have the potential to inhibit the CYP3A4 enzyme and interact with other drugs and medications. However, possible food–drug interactions have to be assessed clinically.
AimTo compare individual case safety reports (ICSR) rates and characteristics between Croatia, Serbia, Montenegro, and Bosnia and Herzegovina (B&H).MethodsThis retrospective pharmacoepidemiological study used the data from ICSR received by the Agency for Medicines and Medical Devices in B&H in 2011-2016. The number, characteristics, and sources of reports, suspected drugs, and patient characteristics were analyzed. The results were compared with the publicly available data from Croatia, Serbia, and Montenegro.ResultsThe number of reported adverse drug reactions per one million of inhabitants was lowest in B&H and highest in Croatia. There were significant differences in reporter characteristics, sources of reports, and the percentage of missing data in ICSR, while the Anatomical Therapeutic Chemical product classes, patient’s sex, and adverse drug reaction System Organ Classes were similar.ConclusionDespite the historical and geographical vicinity of B&H and its neighboring countries, there were significant differences in indicators of pharmacovigilance development.
Cytochrome P450 3A4 is the most significant enzyme in metabolism of medications. Flavonoids are common secondary plant metabolites found in fruits and vegetables. Some flavonoids can interact with other drugs by inhibiting cytochrome P450 enzymes. Thus, the objective of this study was to determine inhibition kinetics of cytochrome P450 3A4 by flavonoids: acacetin, apigenin, chrysin and pinocembrin. For this purpose, testosterone was used as marker substrate, and generation of the 6β-hydroxy metabolite was monitored by high performance liquid chromatography coupled with diode array detector. IC50 values, inhibition constants, and rates of inhibition were determined. IC50 values ranged between 0.6 and 11.4 µM. The strongest inhibitor was chrysin (IC50 0.6 µM, inhibition constant 0.6 µM, inhibition rate constant 0.065 min-1 , inhibition efficacy 0.108 min-1 µM-1). Compared to other flavonoids analyzed, chrysin's inhibitory effect can be attributed to the hydrophobic nonsubstituted B ring, as well as rigidity of the structure. When foods rich in chrysin are consumed, e.g. honey and propolis, chrysin can cause food-drug interactions. Further in vitro studies are needed to determine the reactive intermediate responsible for inactivation of cytochrome P450 3A4 enzyme, as well as in vivo studies to determine possible clinical significance of this inhibition.
Artemisia annua L. has long been known for its medicinal properties and isolation of ingredients whose derivatives are used for therapeutic purposes. The CYP2B6 and CYP3A4 enzymes belong to a large family of cytochrome P450 enzymes. These enzymes are involved in the metabolism of drugs and other xeonobiotics. It is known that various compounds can induce or inhibit the activity of these enzymes. The aim of this study was to investigate the nature of the inhibitory effect of Artemisia annua extract on CYP2B6 and CYP3A4 enzymes, as well as the type of inhibition, the presence of reversible or pseudo-irreversible inhibition, and the possible heme destruction. The methanolic extract of Artemisia annua showed an inhibitory effect on CYP2B6 (by almost 90%) and CYP3A4 enzymes (by almost 70%). A significant decrease in heme concentration by 46.8% and 38.2% was observed in different assays. These results clearly indicate that the studied plant extracts significantly inhibited the activity of CYP2B6 and CYP3A4 enzymes. Moreover, they showed irreversible inhibition, which is even more important for possible interactions with drugs and dietary supplements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.