This paper describes the second edition of the Tyrolean Termination Tool -a fully automatic termination analyzer for first-order term rewrite systems. The main features of this tool are its (non-)termination proving power, its speed, its flexibility due to a strategy language, and the fact that the source code of the whole project is freely available. The clean design together with a stand-alone OCaml library for term rewriting, make it a perfect starting point for other tools concerned with rewriting as well as experimental implementations of new termination methods.
This paper describes the second edition of the Tyrolean Termination Tool-a fully automatic termination analyzer for first-order term rewrite systems. The main features of this tool are its (non-)termination proving power, its speed, its flexibility due to a strategy language, and the fact that the source code of the whole project is freely available. The clean design together with a stand-alone OCaml library for term rewriting, make it a perfect starting point for other tools concerned with rewriting as well as experimental implementations of new termination methods.
Abstract. The use of automata techniques to prove the termination of string rewrite systems and left-linear term rewrite systems is advocated by Geser et al. in a recent sequence of papers. We extend their work to non-left-linear rewrite systems. The key to this extension is the introduction of so-called raise rules and the use of tree automata that are not quite deterministic. Furthermore, we present negative solutions to two open problems related to string rewrite systems.
Abstract.All current investigations to analyze the derivational complexity of term rewrite systems are based on a single termination method, possibly preceded by transformations. However, the exclusive use of direct criteria is problematic due to their restricted power. To overcome this limitation the article introduces a modular framework which allows to infer (polynomial) upper bounds on the complexity of term rewrite systems by combining different criteria. Since the fundamental idea is based on relative rewriting, we study how matrix interpretations and match-bounds can be used and extended to measure complexity for relative rewriting, respectively. The modular framework is proved strictly more powerful than the conventional setting. Furthermore, the results have been implemented and experiments show significant gains in power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.